Predicting Mortality of ICU Patients: The PhysioNet/Computing in Cardiology Challenge 2012 1.0.0

File: <base>/sources/reko.kemppainen_at_gmail.com/entry8/LDA_classifier.m (6,912 bytes)
function LDA_classifier(DYN_DATA,IHD,time_series_names,MD_DATA_D,MD_DATA_DD,MD_DATA,DESCRIPTORS,des_names,R,MD_VARI,MEAN_DATA_24,MEAN_DATA_48)

% %Y=(IHD-1)+IHD; % classes y ={-1,1}
% % X=[MEAN_DATA_24 MEAN_DATA_48];
% 
% %X=[MEAN_DATA_24(params_to_use)];
% 
% % normeeraus ja keskiarvon poisto
% 
% 
% X=[MEAN_DATA_24 MEAN_DATA_48 ];
% 
% %X=[X1];
% 
% %X=[X];
% AGE_a=DESCRIPTORS(:,strcmp(des_names,'Age'));
% Gender_a=DESCRIPTORS(:,strcmp(des_names,'Gender'));
% ICUTYPE_a=[DESCRIPTORS(:,strcmp(des_names,'ICUType'))];
% 
% ICUTYPE_t=ICUTYPE_a;
% 
% ICUTYPE_a(ICUTYPE_t==1)=2;
% ICUTYPE_a(ICUTYPE_t==2)=4;
% ICUTYPE_a(ICUTYPE_t==3)=1;
% ICUTYPE_a(ICUTYPE_t==4)=3;
% 
% X=[AGE_a ICUTYPE_a X];
% 
% 
% 
% 
% 
% %if des{:,strcmp(des_names,'Gender')}==0
% 
% %X_new_rec=zeros(size(X));
% 
%   savefile='gender0.mat'; 
%   savefile='gender0_60.mat';
%   load(savefile,'N2','PHAT_all','best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B');
%    
% 
%      % S_new=calc_S_new_data(X',A,V,Mu,N,CV);
%     X_new_rec =( repmat(Mu,1,size(S,2)) + (A*S))';
%   %  mu1=Mu;
%       sigma0 = sigma;
%     sigma0(sigma0==0) = 1;
%     z = bsxfun(@minus,X_new_rec', mu');
%     z = bsxfun(@rdivide, z, sigma0');
%     
%            %  x_in=(pinv(pc1)*z)';
%   % X(Gender_a==0,:)=x_in(Gender_a==0,:);
%   z=z';
%     X(Gender_a==0,:)=z(Gender_a==0,:);
%    
%      savefile='gender1.mat'; 
%   savefile='gender1_60.mat';
%   load(savefile,'N2','PHAT_all','best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B');
%       %   mu2=Mu;
% %   plot(mu1)
% %   hold on
% %   plot(mu2)
%  % S_new=calc_S_new_data(X(Gender_a==1,:),A,V,Mu,N,CV);
%     X_new_rec =( repmat(Mu,1,size(S,2)) + A*S)';
%       sigma0 = sigma;
%     sigma0(sigma0==0) = 1;
%     z = bsxfun(@minus,X_new_rec', mu');
%     z = bsxfun(@rdivide, z, sigma0');
%             % x_in=(pinv(pc1)*z)';
%  %  X(Gender_a==1,:)=x_in(Gender_a==1,:);
%  z=z';
%  X(Gender_a==1,:)=z(Gender_a==1,:);
%    
% X=[ MD_DATA double(R) MD_VARI X];
% %X=[ MD_DATA MD_VARI X];
% 
% R=~isnan(X);
% s=sum(R,2)==size(X,2); % selects only values that do not contain NaNs
% dis=sum(R,2)~=size(X,2);
% 
% X=X(s,:);
% IHD=IHD(s);
% s_selector=s;
%  %B=log_reg(X,Y,R);
%  %B=teach_log_reg(X,Y,R);
%  
%  
%  
%  alpha = 0:0.05:0.7;
%  lambda = 0:0.05:0.7;
%  scores=zeros(length(alpha)*length(lambda),7);
%  
%  idx=1;
%  
% n=size(X,1);
%     s=zeros(n,1);
%     s(1:round(n/2))=1;
%     s=boolean(s);
 


%     dataTrain=X(s,:);
%  clabelsTrain=IHD(s);
%  labelsTrain=~IHD(s)+1;
%  
%  
%  dataTest=X;
%  labelsTest=~IHD+1;
%  
%  dataValid=X(~s,:);
%  labelsValid=~IHD(~s)+1;

matrixData=DYN_DATA;
clabels=IHD;
 
 weightsLDA = getLDAweights(matrixData,clabels);
 featureVectors = featureExtractionLDA(matrixData,weightsLDA);
 X=featureVectors;
 
 
 
 
 
 
 R=~isnan(X);
s=sum(R,2)==size(X,2); % selects only values that do not contain NaNs
dis=sum(R,2)~=size(X,2);

X=X(s,:);
IHD=IHD(s);
s_selector=s;
 %B=log_reg(X,Y,R);
 %B=teach_log_reg(X,Y,R);
 
 
 
 alpha = 0:0.05:0.7;
 lambda = 0:0.05:0.7;
 scores=zeros(length(alpha)*length(lambda),7);
  scores2=zeros(length(alpha)*length(lambda),7);
 
 idx=1;
 
n=size(X,1);
    s=zeros(n,1);
    s(1:round(n/2))=1;
    s=boolean(s);
 
    dataTrain=X(s,:);
 clabelsTrain=IHD(s);
 labelsTrain=~IHD(s)+1;
 
 
 dataTest=X;
 labelsTest=~IHD+1;
 
 dataValid=X(~s,:);
 labelsValid=~IHD(~s)+1;
 
 
    
 %% jukkiksen starts
for alpha=0:0.05:0.5
for lambda=0:0.05:0.5
D = size(dataTrain,2); % dimension

maxIter = 500;
w_init = 0.1*ones(D+1,1); % initialize parameters

% optimoi malli, siis data annetaan normaalisti piirrevektorina:
[w_opt,fx,it] = minimize(w_init, 'objFuncLR', maxIter, dataTrain, clabelsTrain, alpha, lambda);

% laske ennustustarkkuus:
[ResTrain,labelsEstimTrain,probsTrain,allProbsTrain] = predict_LRoma(w_opt,dataTrain,labelsTrain);
[ResValid,labelsEstimValid,probsValid,allProbsValid] = predict_LRoma(w_opt,dataValid,labelsValid);
[ResTest,labelsEstimTest,probsTest,allProbsTest] = predict_LRoma(w_opt,dataTest,labelsTest);

%% jukkiksen ends

%[best_th,max_score1,BEST_DATA]=opt_th(IHD(s),allProbsTrain);
[best_th1,max_score11,th1,max_score2_11,BEST_DATA]=opt_th(IHD(~s),allProbsValid);
%[best_th,max_score12,th2,max_score2_12,BEST_DATA]=opt_th(~IHD(~s),allProbsValid);
[best_th2,max_score21,th2,max_score2_21,BEST_DATA]=opt_th(IHD(s),allProbsTrain);
%[best_th,max_score22,th2,max_score2_22,BEST_DATA]=opt_th(~IHD(s),allProbsTrain);

 scores(idx,:)=[alpha lambda best_th1 max_score11 th1 max_score21 0];
 scores2(idx,:)=[alpha lambda best_th2 max_score2_11 th2 max_score2_21 0];
 idx=idx+1;

end
end

scores=scores(1:idx-1,:);
scores2=scores2(1:idx-1,:);

[m,i]=max(scores(:,4));
save('score1_LDA.mat','scores')

[m,i]=min(scores2(:,4));
save('score2_LDA.mat','scores2')



function [best_th,max_score1,best_th2,max_score2,BEST_DATA]=opt_th(IHD_,P)
        
    num_params=size(time_series_names,1);
    DATA=zeros(size(IHD_,1),3);
    
    %B = mnrfit(X_,IHD_+1);
    
    PHAT = P';
       
    
    
    max_score1=0;
    max_score2=0;
    best_th=0;
    best_th2=0;
    
    for class_th=.1:.01:0.5
        
        
        
        DATA(:,1)=str2double('0000');
        
        DATA(:,2)=PHAT(:,1);
        
        DATA(:,3)=PHAT(:,1)> class_th;
        
        DATA(DATA(:,2)<0.01,2)=0.01;
        DATA(DATA(:,2)>0.99,2)=0.99;
        
        
     %   if(~isempty(results))
            
            % Calculate sensitivity (Se) and positive predictivity (PPV)
            TP=sum(DATA(IHD_==1,3));
            FN=sum(~DATA(IHD_==1,3));
            FP=sum(DATA(IHD_==0,3));
            Se=TP/(TP+FN);
            PPV=TP/(TP+FP);
            
            show=0; % if show is 1, the decile graph will be displayed by lemeshow()
            H=lemeshow([IHD_ DATA(:,2)],show);
            
            % Use the title of figure to display the results
           % title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ])
            
            % The event 1 score is the smaller of Se and PPV.
            score1 = min(Se, PPV);
            if score1>max_score1
                max_score1=score1;
                best_th=class_th;
               % max_score2=H;
                BEST_DATA=DATA;
                %  display(['Unofficial Event 1 score: ' num2str(score1)]);
            end
            
            if H>max_score2
      
                max_score2=H;
                best_th2=class_th;
               % BEST_DATA=DATA;
                %  display(['Unofficial Event 1 score: ' num2str(score1)]);
            end
            
       % end
        
    end
    
end
end