Noninvasive Fetal ECG: The PhysioNet/Computing in Cardiology Challenge 2013 1.0.0
(4,596 bytes)
%RK4 4th order Runge-Kutta integration
%
% Syntax:
% [x,Y] = rk4(f,dt,x,[P1,P2,P3,Y])
%
% In:
% f - Name of function in form f(x,P(:)) or
% inline function taking the same parameters.
% In chained case the function should be f(x,y,P(:)).
% dt - Delta time as scalar.
% x - Value of x from the previous time step.
% P1 - Values of parameters of the function at initial time t
% as a cell array (or single plain value). Defaults to empty
% array (no parameters).
% P2 - Values of parameters of the function at time t+dt/2 as
% a cell array (or single plain value). Defaults to P1 and
% each empty (or missing) value in the cell array is replaced
% with the corresponding value in P1.
% P3 - Values of parameters of the function at time t+dt.
% Defaults to P2 similarly to above.
% Y - Cell array of partial results y1,y2,y3,y4 in the RK algorithm
% of the second parameter in the interated function. This can be
% used for chaining the integrators. Defaults to empty.
%
% Out:
% x - Next value of X
% Y - Cell array of partial results in Runge-Kutta algorithm.
%
% Description:
% Perform one fourth order Runge-Kutta iteration step
% for differential equation
%
% dx/dt = f(x(t),P{:})
%
% or in the chained case
%
% dx/dt = f(x(t),y(t),P{:})
% dy/dt = g(y(t),P{:})
%
% - Example 1. Simple integration of model
%
% dx/dt = tanh(x), x(0) = 1
%
% can be done as follows:
%
% X = [];
% x = 1;
% f = inline('tanh(x)','x');
% for i=1:100
% x = rk4(f,0.1,x);
% X = [X x];
% end
%
% - Example 2. Chaining of integrators. Consider a
% model of the form
%
% dx/dt = x+y, x(0)=1
% dy/dt = tanh(y), y(0)=2
%
% The equations can be now integrated as follows:
%
% XY = [];
% x = 1;
% y = 2;
% fx = inline('x+y','x','y');
% fy = inline('tanh(y)','y');
% for i=1:100
% [y,YY] = rk4(fy,0.1,y);
% x = rk4(fx,0.1,x,{},{},{},YY);
% XY = [XY [x;y]];
% end
%
% which produces exactly the same result as
%
% XY = [];
% xy = [1;2];
% fxy = inline('[xy(1)+xy(2);tanh(xy(2))]','xy');
% for i=1:100
% xy = rk4(fxy,0.1,xy);
% XY = [XY xy];
% end
% History:
% 14.10.2005 The first official version.
%
% Copyright (C) 2005 Simo Särkkä
%
% $Id: rk4.m 111 2007-09-04 12:09:23Z ssarkka $
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
function [x,Y] = rk4(f,dt,x,P1,P2,P3,Y)
%
% Apply default parameter values
%
if nargin < 4
P1 = {};
end
if nargin < 5
P2 = {};
end
if nargin < 6
P3 = {};
end
if nargin < 7
Y = {};
end
if ~isempty(P1) & ~iscell(P1)
P1 = {P1};
end
if ~isempty(P2) & ~iscell(P2)
P2 = {P2};
end
if ~isempty(P3) & ~iscell(P3)
P3 = {P3};
end
if isempty(P2)
P2 = P1;
else
for i=1:length(P1)
if length(P2) >= i
if isempty(P2{i})
P2{i} = P1{i};
end
else
P2{i} = P1{i};
end
end
end
if isempty(P3)
P3 = P2;
else
for i=1:length(P2)
if length(P3) >= i
if isempty(P3{i})
P3{i} = P2{i};
end
else
P3{i} = P2{i};
end
end
end
%
% Perform Runge-Kutta step
%
if ~isempty(Y)
%
% Chained integration
%
if isstr(f) | strcmp(class(f),'function_handle')
x1 = x;
dx1 = feval(f,x1,Y{1},P1{:}) * dt;
x2 = x+0.5*dx1;
dx2 = feval(f,x2,Y{2},P2{:}) * dt;
x3 = x+0.5*dx2;
dx3 = feval(f,x3,Y{3},P2{:}) * dt;
x4 = x+dx3;
dx4 = feval(f,x4,Y{4},P3{:}) * dt;
else
x1 = x;
dx1 = f(x1,Y{1},P1{:}) * dt;
x2 = x+0.5*dx1;
dx2 = f(x2,Y{2},P2{:}) * dt;
x3 = x+0.5*dx2;
dx3 = f(x3,Y{3},P2{:}) * dt;
x4 = x+dx3;
dx4 = f(x4,Y{4},P3{:}) * dt;
end
else
if isstr(f) | strcmp(class(f),'function_handle')
x1 = x;
dx1 = feval(f,x1,P1{:}) * dt;
x2 = x+0.5*dx1;
dx2 = feval(f,x2,P2{:}) * dt;
x3 = x+0.5*dx2;
dx3 = feval(f,x3,P2{:}) * dt;
x4 = x+dx3;
dx4 = feval(f,x4,P3{:}) * dt;
else
x1 = x;
dx1 = f(x1,P1{:}) * dt;
x2 = x+0.5*dx1;
dx2 = f(x2,P2{:}) * dt;
x3 = x+0.5*dx2;
dx3 = f(x3,P2{:}) * dt;
x4 = x+dx3;
dx4 = f(x4,P3{:}) * dt;
end
end
Y = {x1,x2,x3,x4};
x = x + 1/6 * (dx1 + 2*dx2 + 2*dx3 + dx4);