Paroxysmal Atrial Fibrillation Events Detection from Dynamic ECG Recordings: The 4th China Physiological Signal Challenge 2021 1.0.0
(12,270 bytes)
import json
import numpy as np
import sys
import matplotlib.pyplot as plt
import pandas as pd
import peakutils
from sklearn import preprocessing
from scipy import signal
"""
Written by: Xingyao Wang, Chengyu Liu
School of Instrument Science and Engineering
Southeast University, China
chengyu@seu.edu.cn
"""
def p_t_qrs(ecg_original, fs=1000, gr=1):
delay = 0
skip = 0
m_selected_RR = 0
mean_RR = 0
ser_back = 0
if (fs == 200):
# Low pass and High pass
# Low pass
wn = 12 * 2 / fs
N = 3
a, b = signal.butter(N, wn, 'low')
ecg_l = signal.filtfilt(a, b, ecg_original)
ecg_l = ecg_l / max(abs(ecg_l))
ecg_l = np.around(ecg_l, decimals=4)
# High pass
wn = 5 * 2 / fs
N = 3
a, b = signal.butter(N, wn, 'high')
ecg_h = signal.filtfilt(a, b, ecg_original)
ecg_h = ecg_h / max(abs(ecg_h))
else:
# Bandpass
f1 = 5
f2 = 15
wn = []
wn.append(f1 * 2 / fs)
wn.append(f2 * 2 / fs)
N = 3
a, b = signal.butter(N, wn, 'bandpass')
ecg_h = signal.filtfilt(a, b, ecg_original)
ecg_h = ecg_h / max(abs(ecg_h))
# Derivative
int_c = (5 - 1) / (fs * 1 / 40)
x = np.arange(1,6)
xp = np.dot(np.array([1, 2, 0, -2, -1]), (1 / 8) * fs)
fp = np.arange(1,5+int_c,int_c)
b = np.interp(fp, x, xp)
ecg_d = signal.filtfilt(b, 1, ecg_h)
ecg_d = ecg_d / max(ecg_d)
# Squaring and Moving average
ecg_s = np.power(ecg_d, 2)
ecg_m = np.convolve(ecg_s ,np.ones(int(np.around(0.150*fs)))/np.around(0.150*fs))
delay = delay + np.around(0.150*fs) / 2
# Fiducial Marks
locs = peakutils.indexes(ecg_m, thres=0, min_dist=np.around(0.2 * fs))
pks = ecg_m[locs[:]]
# Init other parameters
LLp = len(pks)
qrs_c = np.zeros(LLp)
qrs_i = np.zeros(LLp)
qrs_i_raw = np.zeros(LLp)
qrs_amp_raw= np.zeros(LLp)
nois_c = np.zeros(LLp)
nois_i = np.zeros(LLp)
SIGL_buf = np.zeros(LLp)
NOISL_buf = np.zeros(LLp)
SIGL_buf1 = np.zeros(LLp)
NOISL_buf1 = np.zeros(LLp)
THRS_buf1 = np.zeros(LLp)
THRS_buf = np.zeros(LLp)
# Init training phase
THR_SIG = max(ecg_m[0:2*fs])*1/3
THR_NOISE = np.mean(ecg_m[0:2*fs])*1/2
SIG_LEV= THR_SIG
NOISE_LEV = THR_NOISE
# Init bandpath filter threshold
THR_SIG1 = max(ecg_h[0:2*fs])*1/3
THR_NOISE1 = np.mean(ecg_h[0:2*fs])*1/2
SIG_LEV1 = THR_SIG1
NOISE_LEV1 = THR_NOISE1
# Thresholding and desicion rule
Beat_C = -1
Beat_C1 = -1
Noise_Count = 0
for i in range(LLp):
if ((locs[i] - np.around(0.150*fs)) >= 1 and (locs[i] <= len(ecg_h))):
_start = locs[i] - np.around(0.15*fs).astype(int)
_ = ecg_h[_start:locs[i]]
y_i = max(_)
x_i = np.argmax(_)
else:
if i == 0:
y_i = max(ecg_h[0:locs[i]])
x_i = np.argmax(ecg_h[0:locs[i]])
ser_back = 1
elif (locs[i] >= len(ecg_h)):
_ = ecg_h[locs[i] - np.around(0.150*fs).astype(int):]
y_i = max(_)
x_i = np.argmax(_)
# Update the heart_rate
if (Beat_C >= 9):
diffRR = np.diff(qrs_i[Beat_C-8:Beat_C])
mean_RR = np.mean(diffRR)
comp = qrs_i[Beat_C] - qrs_i[Beat_C-1]
if ((comp <= 0.92*mean_RR) or (comp >= 1.16*mean_RR)):
THR_SIG = 0.5*(THR_SIG)
THR_SIG1 = 0.5*(THR_SIG1)
else:
m_selected_RR = mean_RR
# Calculate the mean last 8 R waves to ensure that QRS is not
if m_selected_RR:
test_m = m_selected_RR
elif (mean_RR and m_selected_RR == 0):
test_m = mean_RR
else:
test_m = 0
if test_m:
if ((locs[i] - qrs_i[Beat_C]) >= np.around(1.66*test_m)):
_start = int(qrs_i[Beat_C] + np.around(0.20*fs))
_end = int(locs[i] - np.around(0.20*fs))
pks_temp = max(ecg_m[_start:_end+1])
locs_temp = np.argmax(ecg_m[_start:_end+1])
locs_temp = qrs_i[Beat_C] + np.around(0.20*fs) + locs_temp - 1
if (pks_temp > THR_NOISE):
Beat_C += 1
qrs_c[Beat_C] = pks_temp
qrs_i[Beat_C] = locs_temp
if (locs_temp <= len(ecg_h)):
_start = int(locs_temp - np.around(0.150*fs))
_end = int(locs_temp + 1)
y_i_t = max(ecg_h[_start:_end])
x_i_t = np.argmax(ecg_h[_start:_end])
else:
_ = locs_temp - np.around(0.150*fs)
y_i_t = max(ecg_h[_:])
x_i_t = np.argmax(ecg_h[_:])
if (y_i_t > THR_NOISE1):
Beat_C1 += 1
qrs_i_raw[Beat_C1] = locs_temp - np.around(0.150*fs) + (x_i_t - 1)
qrs_amp_raw[Beat_C1] = y_i_t
SIG_LEV1 = 0.25*y_i_t + 0.75*SIG_LEV1
not_nois = 1
SIG_LEV = 0.25*pks_temp + 0.75*SIG_LEV
else:
not_nois = 0
# Find noise and QRS peaks
if (pks[i] >= THR_SIG):
if (Beat_C >= 3):
if ((locs[i] - qrs_i[Beat_C]) <= np.around(0.3600*fs)):
_start = locs[i] - np.around(0.075*fs).astype('int')
Slope1 = np.mean(np.diff(ecg_m[_start:locs[i]]))
_start = int(qrs_i[Beat_C] - np.around(0.075*fs))
_end = int(qrs_i[Beat_C])
Slope2 = np.mean(np.diff(ecg_m[_start:_end]))
if abs(Slope1) <= abs(0.5*(Slope2)):
nois_c[Noise_Count] = pks[i]
nois_i[Noise_Count] = locs[i]
Noise_Count += 1
skip = 1
NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1
NOISE_LEV = 0.125*pks[i] + 0.875*NOISE_LEV
else:
skip = 0
if (skip == 0):
Beat_C += 1
qrs_c[Beat_C] = pks[i]
qrs_i[Beat_C] = locs[i]
if (y_i >= THR_SIG1):
Beat_C1 += 1
if ser_back:
qrs_i_raw[Beat_C1] = x_i
else:
qrs_i_raw[Beat_C1] = locs[i] - np.around(0.150*fs) + (x_i - 1)
qrs_amp_raw[Beat_C1] = y_i
SIG_LEV1 = 0.125*y_i + 0.875*SIG_LEV1
SIG_LEV = 0.125*pks[i] + 0.875*SIG_LEV
elif ((THR_NOISE <= pks[i]) and (pks[i] < THR_SIG)):
NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1
NOISE_LEV = 0.125*pks[i] + 0.875*NOISE_LEV
elif (pks[i] < THR_NOISE):
nois_c[Noise_Count] = pks[i]
nois_i[Noise_Count] = locs[i]
NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1
NOISE_LEV = 0.125*pks[i] + 0.875*NOISE_LEV
Noise_Count += 1
# Adjust the threshold with SNR
if (NOISE_LEV != 0 or SIG_LEV != 0):
THR_SIG = NOISE_LEV + 0.25*(abs(SIG_LEV - NOISE_LEV))
THR_NOISE = 0.5*(THR_SIG)
if (NOISE_LEV1 != 0 or SIG_LEV1 != 0):
THR_SIG1 = NOISE_LEV1 + 0.25*(abs(SIG_LEV1 - NOISE_LEV1))
THR_NOISE1 = 0.5*(THR_SIG1)
SIGL_buf[i] = SIG_LEV
NOISL_buf[i] = NOISE_LEV
THRS_buf[i] = THR_SIG
SIGL_buf1[i] = SIG_LEV1
NOISL_buf1[i] = NOISE_LEV1
THRS_buf1[i] = THR_SIG1
skip = 0
not_nois = 0
ser_back = 0
# Adjust lengths
qrs_i_raw = qrs_i_raw[0:Beat_C1+1]
qrs_amp_raw = qrs_amp_raw[0:Beat_C1+1]
qrs_c = qrs_c[0:Beat_C+1]
qrs_i = qrs_i[0:Beat_C+1]
return qrs_i_raw
def qrs_detect(ECG, fs):
winsize = 5 * fs * 60 # 5min 滑窗
#winsize = 10 * fs # 10s 滑窗
NB_SAMP = len(ECG)
peaks = []
if NB_SAMP < winsize:
peaks.extend(p_t_qrs(ECG, fs))
peaks = np.array(peaks)
peaks = np.delete(peaks, np.where(peaks >= NB_SAMP-2*fs)[0]) # 删除最后2sR波位置
else:
# 5分钟滑窗检测,重叠5s数据
count = NB_SAMP // winsize
for j in range(count+1):
if j == 0:
ecg_data = ECG[j*winsize: (j+1)*winsize]
peak = p_t_qrs(ecg_data, fs)
peak = np.array(peak)
peak = np.delete(peak, np.where(peak >= winsize-2*fs)[0]).tolist() # 删除5分钟窗口最后2sR波位置
peaks.extend(map(lambda n: n+j*winsize, peak))
elif j == count:
ecg_data = ECG[j*winsize-5*fs: ]
if len(ecg_data) == 0:
pass
else:
peak = p_t_qrs(ecg_data, fs)
peak = np.array(peak)
peak = np.delete(peak, np.where(peak <= 2*fs)[0]).tolist() # 删除最后多余窗口前2sR波位置
peaks.extend(map(lambda n: n+j*winsize-5*fs, peak))
else:
ecg_data = ECG[j*winsize-5*fs: (j+1)*winsize]
peak = p_t_qrs(ecg_data, fs)
peak = np.array(peak)
peak = np.delete(peak, np.where((peak <= 2*fs) | (peak >= winsize-2*fs))[0]).tolist() # 删除中间片段5分钟窗口前2s和最后2sR波位置
peaks.extend(map(lambda n: n+j*winsize-5*fs, peak))
peaks = np.array(peaks)
peaks = np.sort(peaks)
dp = np.abs(np.diff(peaks))
final_peaks = peaks[np.where(dp >= 0.2*fs)[0]+1]
return final_peaks
def sampen(rr_seq, max_temp_len, r):
"""
rr_seq: segment of the RR intervals series
max_temp_len: maximum template length
r: initial value of the tolerance matching
"""
length = len(rr_seq)
lastrun = np.zeros((1,length))
run = np.zeros((1,length))
A = np.zeros((max_temp_len,1))
B = np.zeros((max_temp_len,1))
p = np.zeros((max_temp_len,1))
e = np.zeros((max_temp_len,1))
for i in range(length - 1):
nj = length - i - 1
for jj in range(nj):
j = jj + i + 2
if np.abs(rr_seq[j-1] - rr_seq[i]) < r:
run[0, jj] = lastrun[0, jj] + 1
am1 = float(max_temp_len)
br1 = float(run[0,jj])
M1 = min(am1,br1)
for m in range(int(M1)):
A[m] = A[m] + 1
if j < length:
B[m] = B[m]+1
else:
run[0, jj] = 0
for j in range(nj):
lastrun[0, j] = run[0,j]
N = length * (length - 1) / 2
p[0] = A[0] / N
e[0] = -1 * np.log(p[0] + sys.float_info.min)
for m in range(max_temp_len-1):
p[m+1]=A[m+1]/B[m]
e[m+1]=-1*np.log(p[m+1])
return e, A, B
def comp_cosEn(rr_segment):
r = 0.03 # initial value of the tolerance matching
max_temp_len = 2 # maximum template length
min_num_count = 5 # minimum numerator count
dr = 0.001 # tolerance matching increment
match_num = np.ones((max_temp_len,1)) # number of matches for m=1,2,...,M
match_num = -1000 * match_num
while match_num[max_temp_len-1,0] < min_num_count:
e, match_num, B = sampen(rr_segment, max_temp_len, r)
r = r + dr
if match_num[max_temp_len-1, 0] != -1000:
mRR = np.mean(rr_segment)
cosEn = e[max_temp_len-1, 0] + np.log(2 * (r-dr)) - np.log(mRR)
else:
cosEn = -1000
sentropy = e[max_temp_len-1, 0]
return cosEn, sentropy
def load_dict(filename):
'''load dict from json file'''
with open(filename,"r") as json_file:
dic = json.load(json_file)
return dic
def save_dict(filename, dic):
'''save dict into json file'''
with open(filename,'w') as json_file:
json.dump(dic, json_file, ensure_ascii=False)