ECG-Kit 1.0
(1,784 bytes)
%% (Internal) Mean/Median filtering
%
% Output = MedianFilt(Input, WinSize, bRobust)
%
% Arguments:
%
% + Input: the signal
%
% + WinSize: The size of the window in samples
%
% + bRobust: use mean (false) or median (true)
%
% Output:
%
% + Output: filtered output
%
% Example:
%
% WinSize = round(0.2*SamplingFreq);
%
% %Baseline estimation.
% BaselineEstimation = MedianFilt(noisyECG, WinSize );
%
%
% See also BaselineWanderRemovalMedian
%
% Author: Mariano Llamedo Soria llamedom@electron.frba.utn.edu.ar
% Version: 0.1 beta
% Last update: 14/5/2014
% Birthdate : 21/4/2015
% Copyright 2008-2015
%
function Output = MedianFilt(Input, WinSize, bRobust)
if(nargin < 2 || isempty(WinSize) )
WinSize = 31;
end
if(nargin < 3 || isempty(bRobust) )
bRobust = true;
end
if(bRobust)
mean_ptr_func = @nanmean;
else
mean_ptr_func = @nanmean;
end
MidPoint = ceil(WinSize/2);
aux_seq = 1:size(Input,1);
laux_seq = length(aux_seq);
each_sample_idx = arrayfun(@(a)(max(1,a):min(laux_seq,a + WinSize-1)), aux_seq - MidPoint+1, ...
'UniformOutput', false);
Output = cellfun(@(a)(mean_ptr_func(Input(a,:),1)), colvec(each_sample_idx), 'UniformOutput', false);
Output = cell2mat(Output);
%old version
% startSample = MidPoint;
% endSample = size(Input,1) - fix(WinSize/2);
% Output = zeros(endSample-startSample+1, size(Input,2));
%
% iCount = 1;
%
% for iSampleIndex = startSample:endSample
%
% startRange = iSampleIndex-MidPoint+1;
% iRange = startRange:startRange+WinSize-1;
%
% Output(iCount,:) = median( Input(iRange,:) );
%
% iCount = iCount + 1;
%
% end