ECG-Kit 1.0
(8,364 bytes)
%CONFMAT Construct confusion matrix
%
% [C,NE,LABLIST1,LABLIST2] = CONFMAT(LAB1,LAB2,METHOD,FID)
%
% INPUT
% LAB1 Set of labels
% LAB2 Set of labels
% METHOD 'count' (default) to count number of co-occurences in
% LAB1 and LAB2, 'disagreement' to count relative
% non-co-occurrence.
% FID Write text result to file
%
% OUTPUT
% C Confusion matrix
% NE Total number of errors (empty labels are neglected)
% LABLIST1 Label list for LAB1
% LABLIST2 Label list for LAB2
%
% DESCRIPTION
% Constructs a confusion matrix C between two sets of labels LAB1
% (corresponding to the rows in C) and LAB2 (the columns in C). The order of
% the rows and columns is returned in LABLIST. NE is the total number of
% errors (sum of non-diagonal elements in C).
%
% If METHOD = 'count' (default), co-occurences in LAB1 and LAB2 are counted
% and returned in C.
% For METHOD = 'disagreement', the relative disagreement is returned in NE,
% and is split over all combinations of labels in C (such that the rows sum
% to 1). (The total disagreement for a class equals one minus the
% sensitivity for that class as computed by TESTC).
% For METHOD = 'ids' a cell array C is returned in which C(i,j) contains
% the indices of the objects for which LAB1 equals LABLIST1(i,:) and LAB2
% equals LABLIST2(j,:).
%
% [C,NE,LABLIST] = CONFMAT(D,METHOD)
%
% If D is a classification result D = A*W, the labels LAB1 and LAB2 are
% internally retrieved by CONFMAT before computing the confusion matrix.
%
% C = CONFMAT(D)
%
% This call also applies in case in D = A*W the dataset A has soft labels
% W is trained by a soft labeld classifier.
%
% When no output argument is specified, or when FID is given, the
% confusion matrix is displayed or written a to a text file. It is assumed
% that LAB1 contains true labels and LAB2 stores estimated labels.
%
% EXAMPLE
% Typical use of CONFMAT is the comparison of true and and estimated labels
% of a testset A by application to a trained classifier W:
% LAB1 = GETLABELS(A); LAB2 = A*W*LABELD.
% More examples can be found in PREX_CONFMAT, PREX_MATCHLAB.
%
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>)
% MAPPINGS, DATASETS, GETLABELS, LABELD
% Copyright: R.P.W. Duin, r.p.w.duin@37steps.com
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: confmat.m,v 1.8 2010/06/01 08:45:31 duin Exp $
function [CC,ne,lablist1,lablist2] = confmat (arg1,arg2,arg3,fid)
% Check arguments.
if nargin < 4, fid = 1; end
if nargin < 3 | isempty(arg3)
if isdataset(arg1)
if islabtype(arg1,'crisp')
lablist1 = getlablist(arg1);
nlab1 = getnlab(arg1);
lab2 = arg1*labeld;
nlab2 = renumlab(lab2,lablist1); % try to fit on original lablist
if any(nlab2==0) % doesn't fit: contruct its own one
[nlab2,lablist2] = renumlab(lab2);
else
lablist2 = lablist1;
end
if nargin < 2| isempty(arg2)
method = 'count';
prwarning(4,'no method supplied, assuming count');
else
method = arg2;
end
elseif islabtype(arg1,'soft')
true_labs = gettargets(arg1);
if any(true_labs > 1 | true_labs < 0)
error('True soft labels should be between 0 and 1')
end
est_labs = +arg1;
if any(est_labs > 1 | est_labs < 0)
error('Estimated soft labels should be between 0 and 1')
end
C = true_labs'*est_labs;
output(C,getlablist(arg1),getfeatlab(arg1),'soft',fid);
return
else
error('Confusion matrix can only be computed for crisp and soft labeld datasets')
end
else
method = 'count';
prwarning(4,'no method supplied, assuming count');
if (nargin < 2 | isempty(arg2))
error('Second label list not supplied')
end
[nlab1,lablist1] = renumlab(arg1);
[nlab2,lablist2] = renumlab(arg2);
end
else
[nlab1,lablist1] = renumlab(arg1);
[nlab2,lablist2] = renumlab(arg2);
%lab1 = arg1;
%lab2 = arg2;
method = arg3;
end
if nargin < 2
if ~isdataset(arg1)
error('two labellists or one dataset should be supplied')
end
end
% Renumber LAB1 and LAB2 and find number of unique labels.
m = size(nlab1,1);
if (m~=size(nlab2,1))
error('LAB1 and LAB2 have to have the same lengths.');
end
n1 = size(lablist1,1);
n2 = size(lablist2,1);
n = max(n1,n2);
% Construct matrix of co-occurences (confusion matrix).
if strcmp(method,'ids')
C = cell(n1+1,n2+1); % we need to store object id's
else
C = zeros(n1+1,n2+1);
end
for i = 0:n1
K = find(nlab1==i);
if (isempty(K))
if strcmp(method,'ids')
C(i+1,:) = repmat({[]},1,n2+1);
else
C(i+1,:) = zeros(1,n2+1);
end
else
for j = 0:n2
if strcmp(method,'ids')
C(i+1,j+1) = {K(nlab2(K)==j)};
else
C(i+1,j+1) = sum(nlab2(K)==j);
end
end
end
end
% position rejects and unlabeled object at the end of the matrix
D = C;
D(1:end-1,1:end-1) = C(2:end,2:end);
D(end,:) = [C(1,2:end) C(1,1)];
D(1:end-1,end) = C(2:end,1);
C = D;
D = D(1:end-1,1:end-1);
DD = D(1:min(n1,n2),1:min(n1,n2));
% Calculate number of errors ('count') or disagreement ('disagreement').
% Neglect rejects
switch (method)
case {'count','ids'}
J = find(nlab1~=0 & nlab2~=0);
ne = nlabcmp(lablist1(nlab1(J),:),lablist2(nlab2(J),:));
case 'disagreement'
ne = (sum(sum(D)) - sum(diag(DD)))/m; % Relative sum of off-diagonal
ne = ne/m; % entries.
E = repmat(sum(D,2),1,n2); % Disagreement = 1 -
D = ones(n1,n2)-D./E; % relative co-occurence.
D = D / (n-1);
otherwise
error('unknown method');
end
if ~strcmp(method,'ids')
%Distinguish 'rejects / no_labels' from 'non_rejects / fully labeled'
if (any(C(:,end) ~= 0) | any(C(end,:)~=0)) & strcmp(method,'count')
n1 = n1+1; n2 = n2+1;
labch = char(strlab(lablist2),'reject');
labcv = char(strlab(lablist1),'No');
else
labch = strlab(lablist2);
labcv = strlab(lablist1);
%labcv = labch;
C = D;
end
end
% If no output argument is specified, pretty-print C.
if ((nargout == 0) || nargin == 4) && (~strcmp(method,'ids'))
output(C,labcv,labch,method,fid)
end
if nargout > 0 || strcmp(method,'ids')
CC = C;
end
return
function output(C,labcv,labch,method,fid)
n1 = size(labcv,1);
n2 = size(labch,1);
% Make sure labels are stored in LABC as matrix of characters,
% max. 6 per label.
if (size(labch,2) > 6)
labch = labch(:,1:6);
%labcv = labcv(:,1:6);
end
if (size(labch,2) < 5)
labch = [labch repmat(' ',n2,ceil((5-size(labch,2))/2))];
labcv = [labcv repmat(' ',n1,ceil((5-size(labcv,2))/2))];
end
%C = round(1000*C./repmat(sum(C,2),1,size(C,2)));
nspace = max(size(labcv,2)-7,0);
cspace = repmat(' ',1,nspace);
%fprintf(fid,['\n' cspace ' | Estimated Labels']);
fprintf(fid,['\n True ' cspace '| Estimated Labels']);
fprintf(fid,['\n Labels ' cspace '|']);
for j = 1:n2, fprintf(fid,'%7s',labch(j,:)); end
fprintf(fid,'|');
fprintf(fid,' Totals');
fprintf(fid,'\n ');
fprintf(fid,repmat('-',1,8+nspace));
fprintf(fid,'|%s',repmat('-',1,7*n2));
fprintf(fid,'|-------');
fprintf(fid,'\n ');
for j = 1:n1
fprintf(fid,' %-7s|',labcv(j,:));
switch (method)
case 'count'
fprintf(fid,'%5i ',C(j,:)');
fprintf(fid,'|');
fprintf(fid,'%5i',sum(C(j,:)));
case 'disagreement'
fprintf(fid,' %5.3f ',C(j,:)');
fprintf(fid,'|');
fprintf(fid,' %5.3f ',sum(C(j,:)));
case 'soft'
fprintf(fid,' %5.2f ',C(j,:)');
fprintf(fid,'|');
fprintf(fid,' %5.2f ',sum(C(j,:)));
end
fprintf(fid,'\n ');
end
fprintf(fid,repmat('-',1,8+nspace));
fprintf(fid,'|%s',repmat('-',1,7*n2));
fprintf(fid,'|-------');
fprintf(fid,['\n Totals ' cspace '|']);
switch (method)
case 'count'
fprintf(fid,'%5i ',sum(C));
fprintf(fid,'|');
fprintf(fid,'%5i',sum(C(:)));
case 'disagreement'
fprintf(fid,' %5.3f ',sum(C));
fprintf(fid,'|');
% fprintf(fid,' %5.3f ',sum(C(:)));
case 'soft'
fprintf(fid,' %5.2f ',C(j,:)');
fprintf(fid,'|');
fprintf(fid,' %5.2f ',sum(C(:)));
end
fprintf(fid,'\n\n');
return