ECG-Kit 1.0
(3,716 bytes)
% DPS Correntropy based, hierarchical density preserving data split
%
% R = DPS(A,LEVELS,CLASSWISE)
% [R H] = DPS(A,LEVELS,CLASSWISE)
%
% INPUT
% A Input dataset
% LEVELS Number of split levels, default: 3
% CLASSWISE Use (1, default) or ignore (0) label information
%
% OUTPUT
% R Index array with rotation set with 2^LEVELS folds
% H Hierarchy of splits
%
% DESCRIPTION
% Density Preserving Sampling (DPS) divides the input dataset into a given
% number of folds (2^LEVELS) by maximizing the correntropy between the folds
% and can be used as an alternative for cross-validation. The procedure is
% deterministic, so unlike cross-validation it does not need to be repeated.
%
% REFERENCE
% M. Budka, B. Gabrys, Correntropy-based density-preserving data sampling
% as an alternative to standard cross-validation, IJCNN2010, 1-8
% http://www.budka.co.uk/
%
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>)
% DATASETS, CROSSVAL
function [R H] = dps(A,levels,classwise)
if (nargin<3) || isempty(classwise), classwise = 1; end
if (nargin<2) || isempty(levels), levels = 3; end
islabtype(A,'crisp');
H = zeros(levels,size(A,1));
idxs = cell(1,levels+1);
idxs{1} = {1:size(A,1)};
for i = 1:levels
for j = 1:2^(i-1)
t = helper(A(idxs{i}{j},:),classwise);
idxs{i+1}{2*j-1} = idxs{i}{j}(t{1});
idxs{i+1}{2*j} = idxs{i}{j}(t{2});
end
for j = 1:length(idxs{i+1})
H(i,idxs{i+1}{j}) = j;
end
end
R = H(end,:);
end
function idxs = helper(A,classwise)
% if the classes aro too small to be divided further, switch to classless mode
if classwise && all(classsizes(A)>2), c = getsize(A,3);
else classwise = 0; c = 1;
end
siz = zeros(2,1);
idx = cell(1,c);
for i = 1:c
if classwise, [B BI] = seldat(A,i); % select i-th class
else B = A; BI = (1:size(A,1));
end
m = length(BI);
mask = true(1,m); % mask is used for counting remaining objects
D = +distm(B) + diag(inf(m,1)); % working distance matrix
Dorg = D; % original distance matrix
idx{i} = nan(2,ceil(m/2));
for j = 1:floor(m/2)
[mD,I] = min(D,[],1); % \
[mmD,J] = min(mD); % find two closest objects
I = I(J(1)); J = J(1); % /
mask(I) = 0; mask(J) = 0; % mark them as used
% split the objects to maximally increase coverage of both subsets
if (mean(Dorg(I,idx{i}(1,1:j-1))) + mean(Dorg(J,idx{i}(2,1:j-1))) < ...
mean(Dorg(I,idx{i}(2,1:j-1))) + mean(Dorg(J,idx{i}(1,1:j-1))))
idx{i}(1,j) = J;
idx{i}(2,j) = I;
else
idx{i}(1,j) = I;
idx{i}(2,j) = J;
end
% remove used objects from the distance matrix
D(I,:) = inf; D(:,I) = inf;
D(J,:) = inf; D(:,J) = inf;
end
if isempty(j), j = 0; end % in case the loop is not entered at all
% odd number of points in class
if sum(mask)>0
I = find(mask);
if siz(1)<siz(2)
idx{i}(1,end) = I;
elseif siz(1)>siz(2)
idx{i}(2,end) = I;
else
if (mean(Dorg(I,idx{i}(1,1:j))) < mean(Dorg(I,idx{i}(2,1:j))))
idx{i}(2,j+1) = I;
else
idx{i}(1,j+1) = I;
end
end
end
% convert indexes from class-specific to dataset-specific
idx{i}(1,~isnan(idx{i}(1,:))) = BI(idx{i}(1,~isnan(idx{i}(1,:))));
idx{i}(2,~isnan(idx{i}(2,:))) = BI(idx{i}(2,~isnan(idx{i}(2,:))));
% update fold sizes
siz(1) = siz(1) + sum(~isnan(idx{i}(1,:)));
siz(2) = siz(2) + sum(~isnan(idx{i}(2,:)));
end
idx = cell2mat(idx);
idxs = cell(1,2);
idxs{1} = idx(1,~isnan(idx(1,:)));
idxs{2} = idx(2,~isnan(idx(2,:)));
end