ECG-Kit 1.0
(4,316 bytes)
%HISTM Histogramming: mapping of dataset (datafile) to histogram
%
% W = HISTM(A,N)
% W = A*HISTM([],N)
% W = A*HISTM(N)
% C = B*W
%
% C = HISTM(B,X)
% C = B*HISTM(X)
%
% INPUT
% A Dataset or datafile for defining histogram bins (training)
% N Scalar defining number of histogram bins (default 10)
% B Dataset or datafile to be transformed into a histogram with
% predifined bins.
% X Vector with user defined histogram bins (centers)
%
% OUTPUT
% C Dataset or datafile with histogram bin frequencies
%
% DESCRIPTION
% For every object in the dataset B the set of feature values is mapped
% into a histogram, specifying for each bin the number of features having a
% value as specified for that bin. This is particular useful if the objects
% are images and the features are pixels. In that case for every image a
% histogram is found.
%
% The dataset A may be used to find the proper histogram bins. In that case
% histograms with N bins are constructed between the minimum and maximum
% values over all objects in A.
%
% Formally HISTM([],N) is an untrained mapping, to be trained by A as the
% dataset (datafile) A is used to determine the histogram bin centers.
% In case the bins are given like in HISTM(B,X) then we have a trained mapping.
% Consequently, if A is a datafile then in C = A*HISTM(A,10) all objects in
% A are processed twice. Once for determining the bin positions and once for
% filling them. If appropriate a command like C = A*HISTM(A(1,:),10) is
% thereby significantly faster, as it determines the bin positions by just
% a single object.
%
% See IM_HIST for histogramming with known, fixed bin positions.
%
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>)
% DATASETS, DATAFILES, MAPPINGS, HIST, IM_HIST
function out = histm(varargin)
mapname = 'histogramming';
argin = shiftargin(varargin,'vector');
argin = setdefaults(argin,[],10);
[a,bins] = deal(argin{:});
if mapping_task(argin,'definition')
if isdouble(bins) && ~isscalar(bins)
out = define_mapping(argin,'fixed');
else
out = define_mapping(argin,'untrained');
end
out = setname(out,mapname);
elseif mapping_task(argin,'training') % training or fixed execution
if isdouble(bins) && ~isscalar(bins) % fixed execution
n = getfeatsize(a,3);
if isdatafile(a)
%w = addpostproc(a,histm,length(bins)*n);
out = addpostproc(a,histm([],bins));
else
[m,k] = size(a);
fsize = getfeatsize(a);
h = zeros(m,length(bins),n);
for i=1:m
im = reshape(+a(i,:),fsize);
for j=1:n
imj = im(:,:,j);
hh = hist(imj(:),bins);
h(i,:,j) = hh;
end
end
h = reshape(h,m,length(bins)*n);
out = setdat(a,h);
out = setfeatsize(out,[length(bins),n]);
end
else % training
[a,n] = deal(argin{:});
if n < 3
error('Number of histogram bins should be larger than 2')
end
n = n - 2; % room for end bins
if isdatafile(a) % oeps! training from datafile
next = 1; % we just find minimum and maximum
xmin = inf; % of all feature values in all datafiles
xmax = -inf;
while next > 0
[b,next] = readdatafile(a,next);
b = +b;
xmin = min(min(b(:)),xmin);
xmax = max(max(b(:)),xmax);
end
binsize = (xmax-xmin)/n; % and compute the bins
X = [xmin+binsize/2:binsize:xmax-binsize/2]';
else
[N,X] = hist(+a,bins);
n = size(N,1);
end
X(1) = X(1)-10*eps; % forces all objects inside edges
X = [2*X(1)-X(2) ; X ; 2*X(end)-X(end-1)];
outsize = getfeatsize(a,3)*(n+2);
w = prmapping(mfilename,'trained',X,[1:outsize]',0,outsize);
% histm should accept any inputsize
out = setname(w,mapname);
end
elseif mapping_task(argin,'trained execution')
[a,w] = deal(argin{:});
bins = getdata(w);
out = feval(mfilename,a,bins);
else
error('Illegal input')
end
return