ECG-Kit 1.0
(10,904 bytes)
%IM_MOMENTS Fixed mapping for computing central moments of object images
%
% M = IM_MOMENTS(A,TYPE,MOMENTS)
% M = A*IM_MOMENTS([],TYPE,MOMENTS)
% M = A*IM_MOMENTS(TYPE,MOMENTS)
%
% INPUT
% A Dataset with object images dataset (possibly multi-band)
% TYPE Desired type of moments
% MOMENTS Desired moments
%
% OUTPUT
% M Dataset with moments replacing images (poosibly multi-band)
%
% DESCRIPTION
% Computes for all images in A a (1*N) vector M moments as defined by TYPE
% and MOMENTS. The following types are supported:
%
% TYPE = 'none' Standard moments as specified in the Nx2 array MOMENTS.
% Moments are computed with respect to the image center.
% This is the default for TYPE.
% Default MOMENTS = [1 0; 0 1];
% TYPE = 'central' Central moments as specified in the Nx2 array MOMENTS.
% Moments are computed with respect to the image mean
% Default MOMENTS = [2 0; 1 1; 0 2], which computes
% the variance in the x-direction (horizontal), the
% covariance between x and y and the variance in the
% y-direction (vertical).
% TYPE = 'scaled' Scale-invariant moments as specified in the Nx2 array
% MOMENTS. Default MOMENTS = [2 0; 1 1; 0 2]. See [1].
% TYPE = 'hu' Calculates 7 moments of Hu, invariant to translation,
% rotation and scale. See [1].
% TYPE = 'zer' Calculates the Zernike moments up to the order as
% specified in the scalar MOMENTS (1 <= MOMENTS <= 12).
% MOMENTS = 12 generates in total 47 moments. See [2].
%
% REFERENCES
% 1. M. Sonka et al., Image processing, analysis and machine vision.
% 2. A. Khotanzad and Y.H. Hong, Invariant image recognition by Zernike
% moments, IEEE-PAMI, vol. 12, no. 5, 1990, 489-497.
%
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>)
% DATASETS, DATAFILES
% Copyright: D. de Ridder, R.P.W. Duin, r.p.w.duin@37steps.com
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = im_moments(varargin)
argin = shiftargin(varargin,'char');
argin = setdefaults(argin,[],'none',[]);
if mapping_task(argin,'definition')
b = define_mapping(argin,'fixed');
b = setname(b,'Image moments');
else
[a,type,mom] = deal(argin{:});
if isa(a,'prdataset') % allows datafiles too
isobjim(a);
b = filtim(a,mfilename,{type,mom});
elseif isa(a,'double') || isa(a,'dip_image') % here we have a single image
if isa(a,'dip_image'), a = double(a); end
switch type
case {'none'}
if isempty(mom)
mom = [1 0; 0 1];
end
b = moments(a,mom(:,1),mom(:,2),0,0);
case {'central'}
if isempty(mom)
mom = [2 0; 1 1; 0 2];
end
b = moments(a,mom(:,1),mom(:,2),1,0);
case {'scaled'}
if isempty(mom)
mom = [2 0; 1 1; 0 2];
end
b = moments(a,mom(:,1)',mom(:,2)',1,1);
case {'hu' 'Hu'}
b = hu_moments(a);
case {'zer' 'zernike' 'Zernike'}
if isempty(mom)
mom = 12;
end
b = zernike_moments(a,mom);
otherwise
error('Moments should be of type none, central, scaled, hu or zer')
end
else
error('Illegal datatype for input')
end
end
return
% M = MOMENTS (IM, P, Q, CENTRAL, SCALED)
%
% Calculates moments of order (P+Q) (can be arrays of indentical length)
% on image IM. If CENTRAL is set to 1 (default: 0), returns translation-
% invariant moments; if SCALED is set to 1 (default: 0), returns scale-
% invariant moments.
%
% After: M. Sonka et al., Image processing, analysis and machine vision.
function m = moments (im,p,q,central,scaled)
if (nargin < 5), scaled = 0; end;
if (nargin < 4), central = 0; end;
if (nargin < 3)
error ('Insufficient number of parameters.');
end;
if (length(p) ~= length(q))
error ('Arrays P and Q should have equal length.');
end;
if (scaled & ~central)
error ('Scale-invariant moments should always be central.');
end;
% xx, yy are grids with co-ordinates
[xs,ys] = size(im);
[xx,yy] = meshgrid(-(ys-1)/2:1:(ys-1)/2,-(xs-1)/2:1:(xs-1)/2);
if (central)
% Calculate zeroth and first order moments
m00 = sum(sum(im));
m10 = sum(sum(im.*xx));
m01 = sum(sum(im.*yy));
% This gives the center of gravity
xc = m10/m00;
yc = m01/m00;
% Subtract this from the grids to center the object
xx = xx - xc;
yy = yy - yc;
end;
% Calculate moment(s) (p,q).
for i = 1:length(p)
m(i) = sum(sum((xx.^p(i)).*(yy.^q(i)).*im));
end;
if (scaled)
c = 1 + (p+q)/2;
% m00 should be known, as scaled moments are always central
m = m ./ (m00.^c);
end;
return;
% M = HU_MOMENTS (IM)
%
% Calculates 7 moments of Hu on image IM, invariant to translation,
% rotation and scale.
%
% After: M. Sonka et al., Image processing, analysis and machine vision.
function m = hu_moments (im)
p = [ 1 0 2 1 2 0 3 ];
q = [ 1 2 0 2 1 3 0 ];
n = moments(im,p,q,1,1);
m(1) = n(2) + n(3);
m(2) = (n(3) - n(2))^2 + 4*n(1)^2;
m(3) = (n(7) - 3*n(4))^2 + (3*n(5) - n(6))^2;
m(4) = (n(7) + n(4))^2 + ( n(5) + n(6))^2;
m(5) = ( n(7) - 3*n(4)) * (n(7) + n(4)) * ...
( (n(7) + n(4))^2 - 3*(n(5) + n(6))^2) + ...
(3*n(5) - n(6)) * (n(5) + n(6)) * ...
(3*(n(7) + n(4))^2 - (n(5) + n(6))^2);
m(6) = (n(3) - n(2)) * ((n(7) + n(4))^2 - (n(5) + n(6))^2) + ...
4*n(1) * (n(7)+n(4)) * (n(5)+n(6));
m(7) = (3*n(5) - n(6)) * (n(7) + n(4)) * ...
( (n(7) + n(4))^2 - 3*(n(5) + n(6))^2) - ...
( n(7) - 3*n(4)) * (n(5) + n(6)) * ...
(3*(n(7) + n(4))^2 - (n(5) + n(6))^2);
return;
% M = ZERNIKE_MOMENTS (IM, ORDER)
%
% Calculates Zernike moments up to and including ORDER (<= 12) on image IM.
% Default: ORDER = 12.
function m = zernike_moments (im, order)
if (nargin < 2), order = 12; end;
if (order < 1 | order > 12), error ('order should be 1..12'); end;
% xx, yy are grids with co-ordinates
[xs,ys] = size(im);
[xx,yy] = meshgrid(-(ys-1)/2:1:(ys-1)/2,-(xs-1)/2:1:(xs-1)/2);
% Calculate center of mass and distance of any pixel to it
m = moments (im,[0 1 0],[0 0 1],0,0);
xc = m(2)/m(1); yc = m(3)/m(1);
xx = xx - xc; yy = yy - yc;
len = sqrt(xx.^2+yy.^2);
max_len = max(max(len));
% Map pixels to unit circle; prevent divide by zero.
rho = len/max_len;
rho_tmp = rho; rho_tmp(find(rho==0)) = 1;
theta = acos((xx/max_len)./rho_tmp);
% Flip angle for pixels above center of mass
yneg = length(find(yy(:,1)<0));
%disp(find(yy(:,1)<0)')
%disp([size(xx),size(yy),size(theta),yneg])
%disp(' ')
%theta(:,1:yneg) = 2*pi - theta(:,1:yneg);
theta(1:yneg,:) = 2*pi - theta(1:yneg,:);
% Calculate coefficients
c = zeros(order,order);
s = zeros(order,order);
i = 1;
for n = 2:order
for l = n:-2:0
r = polynomial (n,l,rho);
c = sum(sum(r.*cos(l*theta)))*((n+1)/(pi*max_len^2));
s = sum(sum(r.*sin(l*theta)))*((n+1)/(pi*max_len^2));
m(i) = sqrt(c^2+s^2);
i = i + 1;
end;
end;
return
function p = polynomial (n,l,rho)
switch (n)
case 2, switch (l)
case 0, p = 2*(rho.^2)-1;
case 2, p = (rho.^2);
end;
case 3, switch (l)
case 1, p = 3*(rho.^3)-2*rho;
case 3, p = (rho.^3);
end;
case 4, switch (l)
case 0, p = 6*(rho.^4)-6*(rho.^2)+1;
case 2, p = 4*(rho.^4)-3*(rho.^2);
case 4, p = (rho.^4);
end;
case 5, switch (l)
case 1, p = 10*(rho.^5)-12*(rho.^3)+3*rho;
case 3, p = 5*(rho.^5)- 4*(rho.^3);
case 5, p = (rho.^5);
end;
case 6, switch (l)
case 0, p = 20*(rho.^6)-30*(rho.^4)+12*(rho.^2)-1;
case 2, p = 15*(rho.^6)-20*(rho.^4)+ 6*(rho.^2);
case 4, p = 6*(rho.^6)- 5*(rho.^4);
case 6, p = (rho.^6);
end;
case 7, switch (l)
case 1, p = 35*(rho.^7)-60*(rho.^5)+30*(rho.^3)-4*rho;
case 3, p = 21*(rho.^7)-30*(rho.^5)+10*(rho.^3);
case 5, p = 7*(rho.^7)- 6*(rho.^5);
case 7, p = (rho.^7);
end;
case 8, switch (l)
case 0, p = 70*(rho.^8)-140*(rho.^6)+90*(rho.^4)-20*(rho.^2)+1;
case 2, p = 56*(rho.^8)-105*(rho.^6)+60*(rho.^4)-10*(rho.^2);
case 4, p = 28*(rho.^8)- 42*(rho.^6)+15*(rho.^4);
case 6, p = 8*(rho.^8)- 7*(rho.^6);
case 8, p = (rho.^8);
end;
case 9, switch (l)
case 1, p = 126*(rho.^9)-280*(rho.^7)+210*(rho.^5)-60*(rho.^3)+5*rho;
case 3, p = 84*(rho.^9)-168*(rho.^7)+105*(rho.^5)-20*(rho.^3);
case 5, p = 36*(rho.^9)- 56*(rho.^7)+ 21*(rho.^5);
case 7, p = 9*(rho.^9)- 8*(rho.^7);
case 9, p = (rho.^9);
end;
case 10, switch (l)
case 0, p = 252*(rho.^10)-630*(rho.^8)+560*(rho.^6)-210*(rho.^4)+30*(rho.^2)-1;
case 2, p = 210*(rho.^10)-504*(rho.^8)+420*(rho.^6)-140*(rho.^4)+15*(rho.^2);
case 4, p = 129*(rho.^10)-252*(rho.^8)+168*(rho.^6)- 35*(rho.^4);
case 6, p = 45*(rho.^10)- 72*(rho.^8)+ 28*(rho.^6);
case 8, p = 10*(rho.^10)- 9*(rho.^8);
case 10, p = (rho.^10);
end;
case 11, switch (l)
case 1, p = 462*(rho.^11)-1260*(rho.^9)+1260*(rho.^7)-560*(rho.^5)+105*(rho.^3)-6*rho;
case 3, p = 330*(rho.^11)- 840*(rho.^9)+ 756*(rho.^7)-280*(rho.^5)+ 35*(rho.^3);
case 5, p = 165*(rho.^11)- 360*(rho.^9)+ 252*(rho.^7)- 56*(rho.^5);
case 7, p = 55*(rho.^11)- 90*(rho.^9)+ 36*(rho.^7);
case 9, p = 11*(rho.^11)- 10*(rho.^9);
case 11, p = (rho.^11);
end;
case 12, switch (l)
case 0, p = 924*(rho.^12)-2772*(rho.^10)+3150*(rho.^8)-1680*(rho.^6)+420*(rho.^4)-42*(rho.^2)+1;
case 2, p = 792*(rho.^12)-2310*(rho.^10)+2520*(rho.^8)-1260*(rho.^6)+280*(rho.^4)-21*(rho.^2);
case 4, p = 495*(rho.^12)-1320*(rho.^10)+1260*(rho.^8)- 504*(rho.^6)+ 70*(rho.^4);
case 6, p = 220*(rho.^12)- 495*(rho.^10)+ 360*(rho.^8)- 84*(rho.^6);
case 8, p = 66*(rho.^12)- 110*(rho.^10)+ 45*(rho.^8);
case 10, p = 12*(rho.^12)- 11*(rho.^10);
case 12, p = (rho.^12);
end;
end;
return