ECG-Kit 1.0

File: <base>/common/prtools/kernelm.m (5,681 bytes)
%KERNELM Trainable kernel mapping, dissimilarity representation
% 
%   [W,J] = KERNELM(A,KERNEL,SELECT,P1,P2 , ...)
%    W    = A*KERNELM([],KERNEL,SELECT,P1,P2 , ...)
%    W    = A*KERNELM(KERNEL,SELECT,P1,P2 , ...)
%    K    = B*W
%
% INPUT
%   A,B         Datasets
%   KERNEL      Untrained kernel / dissimilarity representation,
%               a mapping computing proximities between objects.
%               default: Euclidean dissimilarities: PROXM('d',1)
%   SELECT      Name of object selection procedure, see below
%   P1,P2, ...  Additional parameters for SELECT
%
% OUTPUT
%   W          Mapping
%   J          Vector with indices of selected objects for representation
%   K          Kernel matrix, dissimilarity representation, 
%              size [SIZE(B,1) LENGTH(J)]
%
% DESCRIPTION
% Computes the kernel mapping W for the representation objects in A. The 
% computation of the kernel matrix, which is a proximity matrix (similarities
% or dissimilarities) should be defined in KERNEL by an untrained mapping 
% like PROXM for predefined proximities or USERKERNEL for user specified
% proximities.
% A*KERNEL should 'train' the kernel, i.e. specify A as representation set.
% B*(A*KERNEL) should compute the kernel matrix: a dataset.
%
% The only advantage of this routine over kernel mappings defined by PROXM
% or USERKERNEL is that it includes some options for object selection
% (prototype selection) of the initial representation set.
%
% Initially, the kernel mapping has a size [SIZE(A,2) SIZE(A,1)]. For
% increased efficiency or accuracy the representation set may be reduced
% by a routine given by the string SELECT to select to objects J, using 
% possibly additional parameters P1, P2, etcetera. 
%
% The following choices for SELECT are supported:
% 
% 'random'    random selection of P1 objects, maximum P2
% 'gendat'    [X,Y,J] = GENDAT(A,P1)
% 'kcentres'  [LAB,J] = KCENTRES(DISTM(A),P1,P2)
% 'modeseek'  [LAB,J] = MODESEEK(DISTM(A),P1)
% 'edicon'    J = EDICON(DISTM(A),P1,P2,P3)
% 'featsel'   J = +FEATSELM(A*KERNELM(A,TYPE,P),P1,P2,P3)
%
% REFERENCES
% 1. E.Pekalska, R.P.W.Duin, P.Paclik, Prototype selection for dissimilarity-
% based classification, Pattern Recognition, vol. 39, no. 2, 2006, 189-208.
% 2. E.Pekalska and R.P.W.Duin, The Dissimilarity Representation for Pattern
% Recognition, Foundations and Applications, World Scientific, 2005, 1-607.
% 
% EXAMPLE
% a = gendatb;
% w = (scalem*kernelm([],'random',5)*fisherc); 
% scatterd(a)
% plotc(a*w)
% plotc(a*w,'r')
% plotc(a*w,'b')
%
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>)
% DATASETS, MAPPINGS, PROXM, USERKERNEL, KERNELC

% Copyright: R.P.W. Duin, r.p.w.duin@37steps.com
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands

% $Id: kernelm.m,v 1.7 2007/07/10 08:25:29 duin Exp $

function w = kernelm(varargin)

	argin = shiftargin(varargin,'prmapping');
	argin = shiftargin(varargin,'char',2);
  argin = setdefaults(argin,[],proxm([],'d',1),[],[],[],[]);
  if mapping_task(argin,'definition')
    w = define_mapping(argin,'untrained');
    w = setname(w,'Kernel mapping');
  else % training
    varargin = cell(1,numel(argin)-3);
    [a,kernel,select,varargin{:}] = deal(argin{:}); 
    if isstr(kernel) % old format of call: kernelm(a,type,p,n), training
      type = kernel;
      p = select;
      if ~isempty(varargin)
        if length(varargin) > 1
          error('Wrong parameters supplied')
        end
        n = varargin{1};
      else
        n = [];
      end
      [m,k] = size(a);
      kernel = proxm([],type,p);
      w = prmapping(mfilename,'trained',{a*kernel},getlab(a),k,m);
      if ~isempty(n)
        w = w*pcam(a*w,n);
      end
      w = setname(w,'Kernel Mapping');

    elseif isa(kernel,'prmapping') && ...
           ~strcmp(getmapping_file(kernel),mfilename) % training

      a = testdatasize(a);
      a = testdatasize(a,'objects');
      isuntrained(kernel);
      [m,k] = size(a);
      %w = prmapping('kernelm','trained',{a*kernel},getlab(a),k,m);
      if isempty(select)
        w = prmapping('kernelm','trained',{a*kernel},getlab(a),k,m);
      elseif ismapping(select)
        r = a*select;
        w = prmapping('kernelm','trained',{r*kernel},getlab(a),k,size(r,1));
      else
        switch select
          case 'random'
            J = randperm(m);
            n = varargin{1};
            if isempty(n) | n > m
              error('Number of objects to be selected not given or too large')
            end
            if n < 1, n = ceil(n*m); end % fraction given
            if ~isempty(varargin{2})
              n = min(n,varargin{2});
            end
            J = J(1:n);
          case 'gendat'    
            [x,y,J] = gendat(a,varargin{1});
          case 'kcentres'  
            [lab,J] = kcentres(distm(a),varargin{1:2});
          case 'modeseek'  
            [lab,J] = modeseek(distm(a),varargin{1});
          case 'edicon'    
            J = edicon(distm(a),varargin{1:3});
          case 'featsel'
            w = prmapping('kernelm','trained',{a*kernel},getlab(a),k,m);
            J = +featselm(a*w,varargin{1:3});
          otherwise
            error('Unknown choice for object selection')
        end
        % redefine mapping with reduced representation set
        labels_out = getlab(a);
        w = prmapping('kernelm','trained',{a(J,:)*kernel},labels_out(J,:),k,length(J));
      end
      w = setname(w,'Kernel Mapping');

    else % Execution of the mapping, w will be a dataset.

      kern = getdata(kernel,1); % trained kernel is stored in datafield
      K = a*kern;
      w = setdat(a,K,kern);

    end
    
  end

return