ECG-Kit 1.0

File: <base>/common/prtools/nmsc.m (2,215 bytes)
%NMSC Nearest Mean Scaled Classifier
% 
% 	W = NMSC(A)
%   W = A*NMSC
% 
% INPUT
%   A   Trainign dataset
%
% OUTPUT
%   W   Nearest Mean Scaled Classifier mapping
%
% DESCRIPTION
% Computation of the linear discriminant for the classes in the dataset A
% assuming normal distributions with zero covariances and equal class variances. 
% The use of soft labels is supported.
%
% The difference with NMC is that NMSC is based on an assumption of normal
% distributions and thereby automatically scales the features and is
% sensitive to class priors. NMC is a plain nearest mean classifier that is
% feature scaling sensitive and unsensitive to class priors.
% 
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>)
% DATASETS, MAPPINGS, NMC, LDC ,FISHERC, QDC, UDC 

% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands

% $Id: nmsc.m,v 1.7 2008/01/25 10:20:07 duin Exp $

function w = nmsc(varargin)
  
	mapname = 'S-NearestMean';
  argin = setdefaults(varargin,[]);
  
  if mapping_task(argin,'definition')
    w = define_mapping(argin,'untrained',mapname);
    
  elseif mapping_task(argin,'training')			% Train a mapping.

    a = argin;
    islabtype(a,'crisp','soft');
    isvaldfile(a,1,2); % at least 1 object per class, 2 classes

    [m,k,c] = getsize(a); 
    p = getprior(a);
    a = setprior(a,p);
    [U,GG] = meancov(a);

    % All class covariance matrices are assumed to be diagonal. They are
    % weighted by the priors, unlike the standard nearest mean classifier (NMC).

    G = zeros(c,k);
    for j = 1:c
      G(j,:) = diag(GG(:,:,j))';
    end
    G = p*G;

    % The two-class case is special, as it can be conveniently stored as an
    % affine mapping.

    if (c == 2)
      ua = +U(1,:); ub = +U(2,:);
      R = G*(ua - ub)';
      R = ((ua - ub)./G)';
      offset = ((ub./G)*ub' - (ua./G)*ua')/2 + log(p(1)/p(2));
      w = affine(R,offset,a,getlablist(a),k,c); 
      w = cnormc(w,a);
    else
      pars.mean = +U; pars.cov = G; pars.prior = p;
      w = normal_map(pars,getlab(U),k,c);
    end

    w = setname(w,mapname);
    w = setcost(w,a);
  
  end

return