ECG-Kit 1.0

File: <base>/common/prtools/nulibsvc.m (5,626 bytes)
%NULIBSVC Trainable classifier: LIBSVM, nu-algorithme
% 
% 	[W,J,NU] = NULIBSVC(A,KERNEL,NU)
% 	[W,J,NU] = A*NULIBSVC([],KERNEL,NU)
% 	[W,J,NU] = A*NULIBSVC(KERNEL,NU)
%
% INPUT
%   A	      Dataset
%   KERNEL  Mapping to compute kernel by A*MAP(A,KERNEL)
%           or string to compute kernel by FEVAL(KERNEL,A,A)
%           or cell array with strings and parameters to compute kernel by
%           FEVAL(KERNEL{1},A,A,KERNEL{2:END})
%           Default: linear kernel.
%   NU      nu value, upperbound error.
%           Default NU is derived from 1-NN error.
%
% OUTPUT
%   W       Mapping: Support Vector Classifier
%   J       Object idences of support objects. Can be also obtained as W{4}			
%   NU      Actual nu_value used
%
% DESCRIPTION
% Optimizes a support vector classifier for the dataset A by the libsvm
% package, see http://www.csie.ntu.edu.tw/~cjlin/libsvm/. LIBSVC calls the
% svmtrain routine of libsvm for training. Classifier execution for a
% test dataset B may be done by D = B*W; In D posterior probabilities are
% given as computed by svmpredict using the '-b 1' option. 
% 
% The kernel may be supplied in KERNEL by
% - an untrained mapping, e.g. a call to PROXM like W = LIBSVC(A,PROXM([],'R',1))
% - a string with the name of the routine to compute the kernel from A
% - a cell-array with this name and additional parameters.
% This will be used for the evaluation of a dataset B by B*W or PRMAP(B,W) as
% well. 
%
% If KERNEL = 0 (or not given) it is assumed that A is already the 
% kernelmatrix (square). In this also a kernel matrix should be supplied at 
% evaluation by B*W or PRMAP(B,W). However, the kernel has to be computed with 
% respect to support objects listed in J (the order of objects in J does matter).
% 
% REFERENCES
% R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order 
% information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005
%
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>) 
% MAPPINGS, DATASETS, LIBSVC, SVC, PROXM

% Copyright: R.P.W. Duin, r.p.w.duin@37steps.com
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
  
function [W,J,NU] = nulibsvc(varargin)
		
	checktoolbox('libsvm');

  mapname = 'nuLIBSVM';
  argin = shiftargin(varargin,{'prmapping','char','cell'});
  argin = setdefaults(argin,[],proxm([],'p',1),[],[]);
  
  if mapping_task(argin,'definition')
    
    W = define_mapping(argin,'untrained',mapname);
    
	elseif mapping_task(argin,'training')			% Train a mapping.

    [a,kernel,NU] = check_for_old_call(argin);	
		if isempty(NU), NU = 2*min(max(testk(a,1),0.01),(0.8*min(classsizes(a))/size(a,1))); end
		%opt = ['-s 0 -t 4 -b 1 -c ',num2str(NU)];
    opt = ['-s 1 -t 4 -b 1 -n ',num2str(NU), ' -q'];
		islabtype(a,'crisp');
		isvaldset(a,1,2); % at least 1 object per class, 2 classes
		[m,k,c] = getsize(a);
		nlab = getnlab(a); 
	
		K = compute_kernel(a,a,kernel);
		K = min(K,K');   % make sure kernel is symmetric
		K = [[1:m]' K];  % as libsvm wants it
	                   % call libsvm
		u = svmtrain(nlab,K,opt);
		if isempty(u)
			prwarning(1,'nulibsvc: no solution for SVM, pseudo-inverse will be used')
			W = lkc(prdataset(K(:,2:end),getlabels(a)),0);
			J = [1:m]';
			return
		end
		                 % Store the results:
   	J = full(u.SVs); 
    if isequal(kernel,0)
      s = [];
      in_size = length(J);
      % in_size = 0; % to allow old and new style calls
    else
      s = a(J,:);
      in_size = k;
    end

    lablist = getlablist(a);         
    W = prmapping(mfilename,'trained',{u,s,kernel,J,opt},lablist(u.Label,:),in_size,c);
		
		W = setname(W,mapname);
		W = setcost(W,a);
			
  else % Evaluation

    [a,W] = deal(argin{1:2});
    [u,s,kernel,J,opt] = getdata(W);
		m = size(a,1);
		
		K = compute_kernel(a,s,kernel);
    k = size(K,2);
    if k ~= length(J)
      if isequal(kernel,0)
        if (k > length(J)) &  (k >= max(J))
          % precomputed kernel; old style call
          prwarning(1,'Old style execution call: The precomputed kernel was calculated on a test set and the whole training set!')  
        else
          error('Inappropriate precomputed kernel!\nFor the execution the kernel matrix should be computed on a test set and the set of support objects');
        end  
      else
        error('Kernel matrix has the wrong number of columns');
      end
    else  
      % kernel was computed with respect to the support objects
      % we make an approprite correction in the libsvm structure
      u.SVs = sparse((1:length(J))');
    end  
    K = [[1:m]' K];  % as libsvm wants it
    %[lab,acc,d] = svmpredict(getnlab(a),K,u,'-b 1');
    [lab,acc,d] = svmpredict(ones(m,1),K,u,'-b 1');
		W = setdat(a,d,W);

	end

 return;

function K = compute_kernel(a,s,kernel)

	% compute a kernel matrix for the objects a w.r.t. the support objects s
	% given a kernel description

	if  isstr(kernel) % routine supplied to compute kernel
		K = feval(kernel,a,s);
	elseif iscell(kernel)
		K = feval(kernel{1},a,s,kernel{2:end});
	elseif ismapping(kernel)
		K = a*prmap(s,kernel);
	elseif kernel == 0 % we have already a kernel
		K = a;
	else
		error('Do not know how to compute kernel matrix')
	end
		
	K = +K;
		
return

function [a,kernel,NU] = check_for_old_call(argin)

[a,kernel,NU,par] = deal(argin{:});
if ischar(kernel) && exist(kernel,'file') ~= 2
  kernel = proxm(kernel,NU);
  NU = par;
end