ECG-Kit 1.0
(3,941 bytes)
%SVO_NU Support Vector Optimizer: NU algorithm
%
% [V,J,C] = SVO(K,NLAB,NU,PD)
%
% INPUT
% K Similarity matrix
% NLAB Label list consisting of -1/+1
% NU Regularization parameter (0 < NU < 1): expected fraction of SV (optional; default: 0.25)
%
% PD Do or do not the check of the positive definiteness (optional; default: 1 (to do))
%
% OUTPUT
% V Vector of weights for the support vectors
% J Index vector pointing to the support vectors
% C Equivalent C regularization parameter of SVM-C algorithm
%
% DESCRIPTION
% A low level routine that optimizes the set of support vectors for a 2-class
% classification problem based on the similarity matrix K computed from the
% training set. SVO is called directly from SVC. The labels NLAB should indicate
% the two classes by +1 and -1. Optimization is done by a quadratic programming.
% If available, the QLD function is used, otherwise an appropriate Matlab routine.
%
% NU is bounded from above by NU_MAX = (1 - ABS(Lp-Lm)/(Lp+Lm)), where
% Lp (Lm) is the number of positive (negative) samples. If NU > NU_MAX is supplied
% to the routine it will be changed to the NU_MAX.
%
% If NU is less than some NU_MIN which depends on the overlap between classes
% algorithm will typically take long time to converge (if at all).
% So, it is advisable to set NU larger than expected overlap.
%
% Weights V are rescaled in a such manner as if they were returned by SVO with the parameter C.
%
% SEE ALSO
% SVC_NU, SVO, SVC
% Copyright: S.Verzakov, s.verzakov@ewi.tudelft.nl
% Based on SVO.M by D.M.J. Tax, D. de Ridder, R.P.W. Duin
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: svo_nu.m,v 1.3 2010/02/08 15:29:48 duin Exp $
function [v,J,C] = svo_nu(K,y,nu,pd)
if (nargin < 4)
pd = 1;
end
if (nargin < 3)
prwarning(3,'Third parameter (nu) not specified, assuming 0.25.');
nu = 0.25;
end
nu_max = 1 - abs(nnz(y == 1) - nnz(y == -1))/length(y);
if nu > nu_max
prwarning(3,['nu==' num2str(nu) ' is not feasible; set to ' num2str(nu_max)]);
nu = nu_max;
end
vmin = 1e-9; % Accuracy to determine when an object becomes the support object.
% Set up the variables for the optimization.
n = size(K,1);
D = (y*y').*K;
f = zeros(1,n);
A = [y';ones(1,n)];
b = [0; nu*n];
lb = zeros(n,1);
ub = ones(n,1);
p = rand(n,1);
if pd
% Make the kernel matrix K positive definite.
i = -30;
while (pd_check (D + (10.0^i) * eye(n)) == 0)
i = i + 1;
end
if (i > -30),
prwarning(2,'K is not positive definite. The diagonal is regularized by 10.0^(%d)*I',i);
end
i = i+2;
D = D + (10.0^(i)) * eye(n);
end
% Minimization procedure initialization:
% 'qp' minimizes: 0.5 x' D x + f' x
% subject to: Ax <= b
%
if (exist('qld') == 3)
v = qld (D, f, -A, b, lb, ub, p, length(b));
elseif (exist('quadprog') == 2)
prwarning(1,'QLD not found, the Matlab routine QUADPROG is used instead.')
v = quadprog(D, f, [], [], A, b, lb, ub);
else
prwarning(1,'QLD not found, the Matlab routine QP is used instead.')
verbos = 0;
negdef = 0;
normalize = 1;
v = qp(D, f, A, b, lb, ub, p, length(b), verbos, negdef, normalize);
end
% Find all the support vectors.
J = find(v > vmin);
% First find the SV on the boundary
I = J(v(J) < 1-vmin);
Ip = I(y(I) == 1);
Im = I(y(I) == -1);
if (isempty(v) | isempty(Ip) | isempty(Im))
%error('Quadratic Optimization failed. Pseudo-Fisher is computed instead.');
prwarning(1,'Quadratic Optimization failed. Pseudo-Fisher is computed instead.');
v = prpinv([K ones(n,1)])*y;
J = [1:n]';
C = nan;
return;
end
v = y.*v;
%wxI = K(I,J)*v(J);
wxIp = mean(K(Ip,J)*v(J),1); % rho-b
wxIm = mean(K(Im,J)*v(J),1); % -rho-b
rho = 0.5*(wxIp-wxIm);
b = -0.5*(wxIp+wxIm);
%b = mean(rho*y(I) - wxI);
v = [v(J); b]/rho;
C = 1/rho;
return;