ECG-Kit 1.0
(1,280 bytes)
%TRAINED_MAPPING Define untrained or fixed mapping
%
% W = TRAINED_CLASSIFIER(A,DATA)
%
% INPUT
% A - Dataset used for training
% DATA - Data (cell array or structure) to be stored in the data-field
% of the mapping in order to transfer it to the execution part
%
% OUTPUT
% W - Classifier
%
% DESCRIPTION
% This routine serves as a simplified definition of a trained classifier.
% It sets automatically the name, the label list and the size. In DATA
% everything should be stored needed for the execution of the mapping,
% either in a structure or by a cell array.
%
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>)
% MAPPINGS, PRMAPPING, TRAINED_MAPPING, DEFINE_MAPPING, MAPPING_TASK
% Copyright: Robert P.W. Duin, prtools@rduin.nl
function w = trained_classifier(varargin)
[a,data] = setdefaults(varargin);
fname = callername;
classfname = getname(feval(fname));
[m,k,c] = getsize(a);
w = prmapping(fname,'trained',data,getlablist(a),k,c);
w = setname(w,classfname);
return
%CALLERNAME
%
% NAME = CALLERNAME
%
% Returns the name the calling function
function name = callername
[ss ,i] = dbstack;
if length(ss) < 3
name = [];
else
name = ss(3).name;
end