ECG-Kit 1.0
(1,547 bytes)
%TRAINED_MAPPING Define trained mapping
%
% W = TRAINED_MAPPING(A,DATA,DIM)
%
% INPUT
% A - Dataset used for training
% DATA - Data (cell araay or structure) to be stored in the data-field
% of the mapping in order to transfer it to the execution part
% DIM - Dimensionality of output space.
%
% OUTPUT
% W - Mapping
%
% DESCRIPTION
% This is a simplified version of the definition of a trained mapping. It
% calls PRMAPPING and derives all needed information from the dataset A used
% for training the mapping. In DATA everything should be stored needed for
% the execution of the mapping, either in a structure or by a cell array.
%
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>)
% MAPPINGS, PRMAPPING, TRAINED_CLASSIFIER, DEFINE_MAPPING, MAPPING_TASK
% Copyright: Robert P.W. Duin, prtools@rduin.nl
function w = trained_mapping(varargin)
[a,data,out_size] = setdefaults(varargin,[],[],0);
fname = callername;
mapname = getname(feval(fname));
if isdataset(a)
if out_size == 0, out_size = getsize(a,3); end
w = prmapping(fname,'trained',data,getlablist(a),size(a,2),out_size);
else
if out_size == 0, out_size = 1; end
w = prmapping(fname,'trained',data,[],size(a,2),out_size);
end
w = setname(w,mapname);
return
%CALLERNAME
%
% NAME = CALLERNAME
%
% Returns the name the calling function
function name = callername
[ss ,i] = dbstack;
if length(ss) < 3
name = [];
else
name = ss(3).name;
end