ECG-Kit 1.0
(1,346 bytes)
%UDC Uncorrelated normal based quadratic Bayes classifier (BayesNormal_U)
%
% W = UDC(A)
% W = A*UDC
%
% INPUT
% A input dataset
%
% OUTPUT
% W output mapping
%
% DESCRIPTION
% Computation a quadratic classifier between the classes in the
% dataset A assuming normal densities with uncorrelated features.
%
% The use of probabilistic labels is supported. The classification A*W is
% computed by normal_map.
%
% EXAMPLES
% PREX_DENSITY
%
% SEE ALSO (<a href="http://37steps.com/prtools">PRTools Guide</a>)
% MAPPINGS, DATASETS, NMC, NMSC, LDC, QDC, QUADRC, NORMAL_MAP
% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: udc.m,v 1.6 2007/06/05 12:45:44 duin Exp $
function W = udc(a)
if nargin == 0
W = prmapping(mfilename);
W = setname(W,'Bayes-Normal-U');
return
end
islabtype(a,'crisp','soft');
isvaldfile(a,2,2); % at least 2 objects per class, 2 classes
[m,k,c] = getsize(a);
[U,G] = meancov(a); %computing mean and covariance matrix
p = getprior(a);
for j = 1:c
G(:,:,j) = diag(diag(G(:,:,j)));
end
w.mean = +U;
w.cov = G;
w.prior = p;
%W = prmapping('normal_map','trained',w,getlab(U),k,c);
W = normal_map(w,getlab(U),k,c);
W = setname(W,'Bayes-Normal-U');
W = setcost(W,a);
return