Database Open Access

MIMIC-IV-ECG: Diagnostic Electrocardiogram Matched Subset

Brian Gow Tom Pollard Larry A Nathanson Alistair Johnson Benjamin Moody Chrystinne Fernandes Nathaniel Greenbaum Jonathan W Waks Parastou Eslami Tanner Carbonati Ashish Chaudhari Elizabeth Herbst Dana Moukheiber Seth Berkowitz Roger Mark Steven Horng

Published: Sept. 15, 2023. Version: 1.0


When using this resource, please cite: (show more options)
Gow, B., Pollard, T., Nathanson, L. A., Johnson, A., Moody, B., Fernandes, C., Greenbaum, N., Waks, J. W., Eslami, P., Carbonati, T., Chaudhari, A., Herbst, E., Moukheiber, D., Berkowitz, S., Mark, R., & Horng, S. (2023). MIMIC-IV-ECG: Diagnostic Electrocardiogram Matched Subset (version 1.0). PhysioNet. https://doi.org/10.13026/4nqg-sb35.

Please include the standard citation for PhysioNet: (show more options)
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.

Abstract

The MIMIC-IV-ECG module contains approximately 800,000 diagnostic electrocardiograms across nearly 160,000 unique patients. These diagnostic ECGs use 12 leads and are 10 seconds in length. They are sampled at 500 Hz. This subset contains all of the ECGs for patients who appear in the MIMIC-IV Clinical Database. When a cardiologist report is available for a given ECG, we provide the needed information to link the waveform to the report. The patients in MIMIC-IV-ECG have been matched against the MIMIC-IV Clinical Database, making it possible to link to information across the MIMIC-IV modules.


Background

An Electrocardiogram or ECG / EKG measures the electrical activity associated with the heart [1]. Diagnostic ECGs are a standard part of a patients care [2]. The standard ECG leads are denoted as lead I, II, III, aVF, aVR, aVL, V1, V2, V3, V4, V5, V6. They are routinely obtained when admitted to the Emergency Department or to a hospital floor. ECGs will typically be repeated for patients who exhibit cardiac symptoms such as chest pain or abnormal rhythms. Daily ECGs may be obtained following acute cardiovascular events such as myocardial infarction. Patients in the Intensive Care Unit (ICU) are continuously monitored to detect rhythm abnormalities, but full ECGs are needed to evaluate evidence of cardiac ischemia or infarction. However, diagnostic ECGs typically only comprise a small part of understanding the overall condition of a subject at the hospital. To fully understand how to best treat a given patient, a broader set of data is collected which may include: patient demographics, diagnosis, medications, lab tests, and additional information. This broader set of clinical information is shared as part of the MIMIC-IV Clinical Database [3]. The MIMIC-IV-ECG Matched Subset contains the vast majority of diagnostic ECGs collected between 2008 - 2019 for subjects in MIMIC-IV.


Methods

As part of routine care, diagnostic ECGs are collected across Beth Israel Deaconess Medical Center (BIDMC). Three types of information associated with an ECG are presented here. The electrocardiogram waveforms themselves, the machine measurements (ex: average RR interval as calculated by the machine), and the cardiologist reports. Identifiers connected to the ECGs allow this information to be connected back to the patients overall electronic health record. All of the information is de-identified to satisfy the US Health Insurance Portability and Accountability Act of 1996 (HIPAA) Safe Harbor requirements.

Electronic Health Record

Patients from the MIMIC-IV Clinical Database who had ECGs collected between 2008 - 2019 are included as part of MIMIC-IV-ECG. The diagnostic ECGs are collected on machines from various manufacturers including Burdick/Spacelabs, Philips, and General Electric. When the ECG is collected, the machine is populated with the patient's demographics and their medical record number (MRN).

As part of de-identification the raw identifiers are shifted. The patient's MRN was used to match a given 12-lead ECG record to the corresponding subject ID in the MIMIC-IV Clinical Database. As another part of the de-identification, the date-time information was shifted to obscure the actual date and time. Relative date-time information for a given subject is preserved though. The shifted date-times were matched against date-times in the subject's MIMIC-IV Clinical Database records. A unique study_id was generated for each record.

Electrocardiogram Waveforms

If a patient appears in the MIMIC-IV Clinical Database, all of their available ECG waveforms were pulled. This includes ECGs from the BIDMC emergency department, hospital (including the ICU), and outpatient care centers. We converted the ECGs from the manufacturers format to the open WFDB format 16 [4] with each WFDB record comprised of a header (.hea) file and a signal (.dat) file. The files were then transferred from BIDMC to MIT for additional processing.

We scrubbed the WFDB header files for PHI such that only the signal information, subject ID, and shifted date-time are provided. Timestamps for events in the MIMIC-IV Clinical Database, such as drug administration, are aligned with the timestamps in MIMIC-IV-ECG. However, some of the diagnostic ECGs provided here were collected outside of ED or ICU visits at the hospital. Since the MIMIC-IV Clinical Database is comprised solely of ED and ICU data, the ECG timestamp can occur before or after a visit from the clinical database.

Machine Measurements

The ECG machine generates summary reports and summary measures (ex: RR interval, QRS onset and end, etc.) for each diagnostic ECG. We collectively refer to these as machine measurements. The machine output is parsed and any PHI is removed. In particular, the MRN is shifted to subject_id, the de-identified study_id is assigned in a manner consistent with the ECG waveform files, and the raw Cart ID is randomly shifted to create a de-identified cart_id. There was no PHI in the report lines. 

The global machine measures are provided in this release. These global measures are calculated across all 12 leads. Machine measurements for individual leads may be released in a future version of this project. 

Cardiologist Reports

Most ECG waveforms get read by a cardiologist and an associated report is generated from the reading. We provide information for linking a waveform with its associated report where available. 

The de-identified free-text notes from these ECG reports will be made available as part of the MIMIC-IV-Note module [5] at a later time. These ECG reports are de-identified using a rule-based approach [6, 7, 8], similar to that used for other MIMIC reports.


Data Description

Electrocardiogram Waveforms

Approximately 800,000 ten-second-long 12 lead diagnostic ECGs across nearly 160,000 unique subjects are provided in the MIMIC-IV-ECG module. Around 5% of the available diagnostic ECGs were withheld from this release so they can be used as a hidden test set in workshops and challenges. The ECGs are sampled at 500 Hz. The patients in this module have been matched with the MIMIC-IV Clinical Database. Many of the provided diagnostic ECGs overlap with a MIMIC-IV hospital or emergency department stay but a number of them do not overlap. Approximately 55% of the ECGs overlap with a hospital admission and 25% overlap with an emergency department visit.

The ECGs are grouped into subdirectories based on subject_id. Each DICOM record path follows the pattern: files/pNNNN/pXXXXXXXX/sZZZZZZZZ/ZZZZZZZZ, where:

  • NNNN is the first four characters of the subject_id,
  • XXXXXXXX is the subject_id,
  • ZZZZZZZZ is the study_id

An example of the file structure is as follows:

files
├── p1000
|   └── p10001725
|       └── s41420867
|           ├── 41420867.dat
|           └── 41420867.hea
└── p1002
    └── p10023771
        ├── s42745010
        │   ├── 42745010.dat
        │   └── 42745010.hea
        ├── s46989724
        │   ├── 46989724.dat
        │   └── 46989724.hea
        └── s42460255
            ├── 42460255.dat
            └── 42460255.hea

Above we find two subjects p10001725 (under the p1000 group level directory) and p10023771 (under the p1002 group level directory). For subject p10001725 we find one study: s41420867. For p10023771 we find three studies: s42745010, s46989724, s42460255. The study identifiers are completely random, and their order has no implications for the chronological order of the actual studies. Each study has a like named .hea and .dat file, comprising the WFDB record. 

The record_list.csv file contains the file name and path for each WFDB record. It also provides the corresponding subject ID and study ID. The subject ID can be used to link a subject from MIMIC-IV-ECG to the other modules in the MIMIC-IV Clinical Database. 

Machine Measurements

Machine measurements for each ECG waveform are provided in the machine_measurements.csv file. A data dictionary provides a description for each of the columns in machine_measurements_data_dictionary.csv. The machine measurements table provides the machine generated reports in columns report_0..report_17. The report lines are provided as generated by the machine. In some cases there will be a column with no text in between columns with text (ex: report_0: <text_a>, report_1: empty, report_2: <text_b>). In addition to the summary measurements (rr_interval, qrs_onset, qrs_end, etc.) columns for the machine's bandwidth and filter settings (filtering) are provided. A cart_id is provided which can be used to track which machine was used for a given ECG. Finally, the subject_id, study_id, and ecg_time are provided, consistent with the ECG waveform files themselves. 

Cardiologist Reports 

A little more than 600,000 cardiologist reports are available for the ~800,000 diagnostic ECGs. Not all diagnostic ECGs get read by a cardiologist. This is the primary reason that there are fewer reports than waveforms.

The waveform_note_links.csv table provides a note_id for the associated ECG waveform. This note_id can be used to link between a waveform and the free-text note in the MIMIC-IV-Note module. Each note_id is composed of the subject ID, the abbreviation for the domain (EK) that the report comes from, and a sequential integer. The sequential integer is also listed in its own column, note_seq, and can be used to decipher the order in which ECGs were collected for a given subject across all of their visits. This table also contains the subject ID, study ID, and waveform path.

BigQuery

The information from the record_list.csv, machine_measurements.csv, and waveform_note_links.csv tables are available on BigQuery [9].


Usage Notes

This module provides MIMIC-IV users an additional, potentially important piece of information for their research using MIMIC. 

There are some limitations with this dataset. The date and time for each ECG were recorded by the machine's internal clock, which in most cases was not synchronized with any external time source. As a result, the ECG time stamps could be significantly out of sync with the corresponding time stamps in the MIMIC-IV Clinical Database, MIMIC-IV Waveform Database, or other modules in MIMIC-IV. An additional limitation, as noted above, is that some of the ECGs provided here were collected outside of the ED and ICU. This means that the timestamps for those ECGs won't overlap with data from the MIMIC-IV Clinical Database.

The signals can be viewed in Lightwave by clicking the Visualize waveforms links in the Files section below. Additionally, the signals can be read by using the WFDB toolboxes provided on PhysioNet: WFDB (in C) [10], WFDB-Matlab [11], and WFDB-Python [12]. Here is a basic script for reading a downloaded record from this project and plotting it by using the WFDB-Python toolbox:


import wfdb 
rec_path = '/files/p1000/p10001725/s41420867/41420867' 
rd_record = wfdb.rdrecord(rec_path) 
wfdb.plot_wfdb(record=rd_record, figsize=(24,18), title='Study 41420867 example', ecg_grids='all')

where rec_path is the path to the name of the .hea and .dat files for the record you'd like to plot.

Here we provide an example of how subject p10023771 from MIMIC-IV-ECG can be linked to their admission information in the MIMIC-IV Clinical Database.  Executing this from BigQuery:

SELECT * FROM `physionet-data.mimiciv_hosp.admissions` WHERE subject_id=10023771

we see that the patient only has one admission to the hospital with an admittime = 2113-08-25T07:15:00 and a dischtime = 2113-08-30T14:15:00. We also need to check to see if they were seen in the emergency department and not admitted to the hospital:

SELECT * FROM `physionet-data.mimiciv_ed.edstays` WHERE subject_id = 10023771

We observe that they did not have a stay in the emergency department.

Next, we get the timestamps from the diagnostic ECGs by checking the base_date and base_time variables. These are the variables used in the WFDB format for storing date and time. They correspond with the timestamps for the diagnostic ECGs that are provided in the summary tables. We then save the result to a csv file:


from pathlib import Path
import pandas as pd

import wfdb

# get the path to all the study .hea files for p10023771
paths = list(Path("p10023771/.").rglob("*.hea"))

# get date and time for each study
date_times = {'study':[],'date':[],'time':[]} # use a dictionary to store the date and time for each study
for file in paths:
    study = file.stem
    metadata = wfdb.rdheader(f'{file.parent}/{file.stem}')
    date_times['study'].append(study)
    date_times['date'].append(metadata.base_date)
    date_times['time'].append(metadata.base_time)

df_date_times = pd.DataFrame(data=date_times)
df_date_times.to_csv('p10023771_date_times.csv', index=False)

We observe the following for the 3 diagnostic ECGs for p10023771

study datetime
42745010 2110-07-23T08:43
46989724 2113-08-19T07:18
42460255 2113-08-25T13:58

where the date is given before the T as YYYY-MM-DD and the time is given after the T as HH:MM. Comparing this to the subjects admission in the MIMIC-IV Clinical Database:

admittime dischtime
2113-08-25T07:15 2113-08-30T14:15

we observe that s42745010 and s46989724 occurred prior to their only hospital admission while s42460255 occurred during their hospital admission. 

We can also check the available cardiologist reports for this subject by running this command in BigQuery:


SELECT * FROM `lcp-consortium.mimic_ecg.reports` WHERE subject_id = 10023771

We find that there are cardiologist reports available for s46989724 and s42460255 but not s42745010. Please note that only members who are part of our consortium can access the cardiologist reports / notes from lcp-consortium on BigQuery.


Release Notes

MIMIC-IV-ECG v1.0

This release removes the sensitive information (i.e. free-text note) from the cardiologist reports. We now simply provide information for linking between the waveforms in this module and their associated free-text note in MIMIC-IV-Note module. Since that sensitive information has been removed, the project access has been changed to open instead of requiring credentialling. 


Ethics

The project was approved by the Institutional Review Boards of Beth Israel Deaconess Medical Center (Boston, MA) and the Massachusetts Institute of Technology (Cambridge, MA). Requirement for individual patient consent was waived because the project did not impact clinical care and all protected health information was deidentified.


Acknowledgements

SH, RM, BG, DM, and TP are funded by the Massachusetts Life Sciences Center, Nov. 30, 2020. NG is supported by National Institutes of Health National Library of Medicine Biomedical Informatics and Data Science Research Training Program under grant number T15LM007092-30. BG, TP, AJ, BM, CF, DM, and RM are supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) under NIH grant number R01EB030362.


Conflicts of Interest

The author(s) have no conflicts of interest to declare.


References

  1. Geselowitz DB. On the theory of the electrocardiogram. Proceedings of the IEEE. 1989 Jun;77(6):857-76.
  2. Harris PR. The Normal electrocardiogram: resting 12-Lead and electrocardiogram monitoring in the hospital. Critical Care Nursing Clinics. 2016 Sep 1;28(3):281-96.
  3. Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L. A., & Mark, R. (2021). MIMIC-IV (version 1.0). PhysioNet. https://doi.org/10.13026/s6n6-xd98.
  4. Documentation for the Waveform Database (WFDB) file format. https://wfdb.io/ [Accessed 21 June 2022]
  5. Johnson, A., Pollard, T., Horng, S., Celi, L. A., & Mark, R. (2023). MIMIC-IV-Note: Deidentified free-text clinical notes (version 2.2). PhysioNet. https://doi.org/10.13026/1n74-ne17.
  6. Margaret Douglass, Computer-assisted de-identification of free-text nursing notes. Master's Thesis, 2005. MIT.
  7. Neamatullah, I., Douglass, M.M., Lehman, L.H., Reisner, A., Villarroel, M., Long, W.J., Szolovits, P., Moody, G.B., Mark, R.G., Clifford, G.D. (2007). De-Identification Software Package (version 1.1). PhysioNet. doi:10.13026/C20M3F
  8. Neamatullah I, Douglass MM, Lehman LH, Reisner A, Villarroel M, Long WJ, Szolovits P, Moody GB, Mark RG, Clifford GD. Automated de-identification of free-text medical records. BMC medical informatics and decision making. 2008 Dec;8(1):1-7. doi:10.1186/1472-6947-8-32
  9. Documentation about using the Medical Information Mart for Intensive Care (MIMIC) Database with Google BigQuery. https://mimic.mit.edu/docs/gettingstarted/cloud/ [Accessed 21 June 2022]
  10. Documentation for the Waveform Database (WFDB) toolbox in C. https://physionet.org/content/wfdb/10.7.0/ [Accessed 21 June 2022]
  11. Documentation for the Waveform Database (WFDB) toolbox for Matlab. https://physionet.org/content/wfdb-matlab/0.10.0/ [Accessed 21 June 2022]
  12. Documentation for the Waveform Database (WFDB) toolbox for Python. https://physionet.org/content/wfdb-python/3.4.1/ [Accessed 21 June 2022]

Parent Projects
MIMIC-IV-ECG: Diagnostic Electrocardiogram Matched Subset was derived from: Please cite them when using this project.
Share
Access

Access Policy:
Anyone can access the files, as long as they conform to the terms of the specified license.

License (for files):
Open Data Commons Open Database License v1.0

Discovery
Corresponding Author
You must be logged in to view the contact information.
Versions
  • 0.1 - Dec. 23, 2022
  • 0.2 - Feb. 8, 2023
  • 0.3 - July 21, 2023
  • 1.0 - Sept. 15, 2023

Files

Total uncompressed size: 90.4 GB.

Access the files

Visualize waveforms

Folder Navigation: <base>/files/p1351
Name Size Modified
Parent Directory
p13510218
p13510255
p13510341
p13510404
p13510413
p13510529
p13510586
p13510614
p13510888
p13510975
p13510990
p13510993
p13511025
p13511043
p13511052
p13511146
p13511375
p13511379
p13511489
p13511499
p13511560
p13511591
p13511597
p13511610
p13511701
p13511709
p13511775
p13511794
p13511876
p13511915
p13512048
p13512077
p13512112
p13512152
p13512341
p13512418
p13512432
p13512456
p13512492
p13512517
p13512527
p13512565
p13512582
p13512647
p13512648
p13512738
p13512753
p13512758
p13512842
p13512918
p13512950
p13513053
p13513087
p13513092
p13513122
p13513150
p13513152
p13513181
p13513232
p13513234
p13513261
p13513406
p13513470
p13513605
p13513638
p13513868
p13513963
p13514012
p13514069
p13514137
p13514163
p13514282
p13514296
p13514308
p13514373
p13514385
p13514465
p13514482
p13514709
p13514726
p13514750
p13514874
p13514894
p13515000
p13515046
p13515075
p13515082
p13515174
p13515219
p13515249
p13515257
p13515390
p13515401
p13515404
p13515448
p13515479
p13515548
p13515553
p13515601
p13515629
p13515630
p13515641
p13515731
p13515776
p13515872
p13515954
p13516001
p13516027
p13516065
p13516147
p13516165
p13516231
p13516267
p13516268
p13516301
p13516330
p13516344
p13516402
p13516631
p13516725
p13516771
p13516800
p13516849
p13516958
p13517018
p13517034
p13517102
p13517123
p13517429
p13517478
p13517501
p13517519
p13517765
p13517783
p13517822
p13517879
p13518014
p13518038
p13518070
p13518071
p13518094
p13518105
p13518155
p13518273
p13518298
p13518301
p13518374
p13518380
p13518421
p13518456
p13518474
p13518854
p13518938
p13519075
p13519076
p13519132
p13519161
p13519258
p13519333
p13519358
p13519401
p13519407
p13519520
p13519531
p13519614
p13519688
p13519717
p13519786
p13519869
p13519909
p13519934
RECORDS (download) 25.1 KB 2023-08-27