PhysioNet Cardiovascular Signal Toolbox 1.0.0
(3,517 bytes)
function [alpha1, alpha2] = EvalDFA(NN,tNN,sqi,HRVparams,windows_all)
% [alpha1, alpha2] = EvalDFA(NN,tNN,sqi,HRVparams,windows_all)
%
% OVERVIEW: This function returns DFA scaling coefficients calculated on
% input NN intervals for each window.
%
% INPUT: MANDATORY:
% NN : a single row of NN (normal normal) interval
% data in seconds
% tNN : the time indices of the rr interval data
% (seconds)
% sqi : (Optional )Signal Quality Index; Requires
% a matrix with at least two columns. Column
% 1 should be timestamps of each sqi measure,
% and Column 2 should be SQI on a scale from 0 to 1.
% HRVparams : struct of settings for hrv_toolbox analysis
% windows_all : vector containing the starting time of each
% windows (in seconds)
%
% OUTPUT:
% alpha1 : estimate of scaling exponent for short-term
% fluctuations, minBoxSize <= n < midBoxSize
% alpha2 : estimate of scaling exponent for long-term
% fluctuations, midBoxSize <= n <= maxBoxSize
%
% REPO:
% https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox
% ORIGINAL SOURCE AND AUTHORS:
% Written by Giulia Da Poian
% COPYRIGHT (C) 2016
% LICENSE:
% This software is offered freely and without warranty under
% the GNU (v3 or later) public license. See license file for
% more information
%
% Verify input arguments
if nargin < 4
error('Wrong number of input parameters');
end
if nargin < 5 || isempty(windows_all)
windows_all = 0;
end
if isempty(sqi)
sqi(:,1) = tNN;
sqi(:,2) = ones(length(tNN),1);
end
% Set Defaults
if windows_all == 0
windowlength = length(NN);
else
windowlength = HRVparams.DFA.windowlength;
end
SQI_LowQualityThresh = HRVparams.sqi.LowQualityThreshold;
RejectionThreshold = HRVparams.RejectionThreshold;
minBox = HRVparams.DFA.minBoxSize;
maxBox = HRVparams.DFA.maxBoxSize;
midBox = HRVparams.DFA.midBoxSize;
% Preallocate arrays (all NaN) before entering the loop
alpha1 = nan(length(windows_all),1);
alpha2 = nan(length(windows_all),1);
%Analyze by Window
% Loop through each window of RR data
for idxWin = 1:length(windows_all)
% Check window for sufficient data
if ~isnan(windows_all(idxWin))
% Isolate data in this window
idx_NN_in_win = find(tNN >= windows_all(idxWin) & tNN < windows_all(idxWin) + windowlength);
idx_sqi_win = find(sqi(:,1) >= windows_all(idxWin) & sqi(:,1) < windows_all(idxWin) + windowlength);
sqi_win = sqi(idx_sqi_win,:);
nn_win = NN(idx_NN_in_win);
% Analysis of SQI for the window
lowqual_idx = find(sqi_win(:,2) < SQI_LowQualityThresh);
% If enough data has an adequate SQI, perform the calculations
if numel(lowqual_idx)/length(sqi_win(:,2)) < RejectionThreshold
alpha1(idxWin) = dfaScalingExponent(nn_win, minBox, midBox, 0);
alpha2(idxWin) = dfaScalingExponent(nn_win, midBox, maxBox, 0);
end
end % end check for sufficient data
end % end of loop through window
end % end of function