PhysioNet Cardiovascular Signal Toolbox 1.0.0
(3,513 bytes)
function alpha = dfaScalingExponent(x, minBoxSize, maxBoxSize, pflag)
%
% varargout = dfaScalingExponent(xminBoxSize, midBoxSize, maxBoxSize, pflag)
% calculates the detrended fluctuation analysis estimate of the scaling
% exponent alpha.
%
% INPUTS
% x : A Nx1 vector containing the series to be analyzed
% minBoxSize : Smallest box width (default: 4)
% maxBoxSize : Largest box width (default: N/4)
% pflag : (Optional) pflag=1 plot, pflag=0
% OUTPUTS
% alpha : estimate of scaling exponent, +
% minBoxSize <= n <= maxBoxSize
%
% The raw time series x(i) is first integrated to give y(i); i=1,...,N.
% For each length scale, n, y(i) is divided into segments of equal length, n.
% In each segment, the data is detrended by subtracting the local linear least
% squares fit, yn(k). The root-mean-square fluctuation of this integrated
% and detrended time series is given by
% F(n) = sqrt( (1/N) sum_{k=1}^N [y(k) - yn(k)]^2 )
% We calculate the average fluctuation F(n) for each segment n.
% If the scaling approximately given by F(n) = c n^alpha,
% we can estimate alpha by calculating the slope of log F(n) versus log n.
% Such a linear relationship on a log-log plot indicates the presence of
% power law (fractal) scaling.
% A log-log plot of F(n) against n is provided when pflag=1. Default: plag=0.
% Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL.
% Mosaic organization of DNA nucleotides. Phys Rev E 1994;49:1685-1689.
%
%
% 09-20-2017 Modified by Giulia Da Poian (GDP) to be included in the Physionet
% HRV Toolkit for Matlab. (Original function name: dfa)
%
% REPO:
% https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox
% Copyright (c) 2005 Patrick E. McSharry (patrick@mcsharry.net)
%
% LICENSE:
% This software is offered freely and without warranty under
% the GNU (v3 or later) public license. See license file for
% more information
if nargin < 2 || isempty(minBoxSize)
minBoxSize = 4;
end
if nargin < 3 || isempty(maxBoxSize)
maxBoxSize = length(x)/4;
end
if nargin < 5
pflag = 0;
end
if size(x,1)<size(x,2)
x=x';
end
N = length(x);
y = cumsum(x);
n1 = round(log2(minBoxSize)); % modified GDP, was 3
n2 = round(log2(maxBoxSize)); % modified GDP, was n2 = round(log2(N/2))
ns = (2.^(n1:n2))'; % modified GDP, was ns =[2.^[n1:n2] N]'
nn = length(ns);
F = zeros(nn,1);
for n=1:nn
t = trend(y, ns(n));
z = y - t;
F(n) = sqrt(mean(z.^2));
end
lns = log10(ns);
lF = log10(F);
A = ones(nn,2);
A(:,2) = lns;
a = pinv(A)*lF;
alpha = a(2);
lFpred = A*a;
if pflag == 1
figure;
loglog(10.^lns, 10.^lF,'b.-','MarkerSize',16);
hold;
loglog(10.^[lns(1) lns(nn)], 10.^[lFpred(1) lFpred(nn)],'k');
xlabel('n');
ylabel('F(n)');
title(['F(n) ~ n^{\alpha} with \alpha = ' num2str(a(2)) ]);
end
end % dfaScalingExponent function
function t = trend(y, n)
N = length(y);
t = zeros(N,1);
r = floor(N/n);
for i=1:r
v = y((i-1)*n+1:i*n);
t((i-1)*n+1:i*n) = linfit(v);
end
v = y(r*n+1:N);
t(r*n+1:N) = linfit(v);
end % trend function
function up = linfit(v)
k = length(v);
A = ones(k,2);
u = [1:k]';
A(:,2) = u;
a = pinv(A)*v;
up = A*a;
end % linfit function