Database Open Access

VTaC: A Benchmark Dataset of Ventricular Tachycardia Alarms from ICU Monitors

Li-wei Lehman Benjamin Moody Lucas McCullum Hasan Saeed Harsh Deep Diane Perry Tristan Struja Qiao Li Gari Clifford Roger Mark

Published: Oct. 1, 2024. Version: 1.0


When using this resource, please cite: (show more options)
Lehman, L., Moody, B., McCullum, L., Saeed, H., Deep, H., Perry, D., Struja, T., Li, Q., Clifford, G., & Mark, R. (2024). VTaC: A Benchmark Dataset of Ventricular Tachycardia Alarms from ICU Monitors (version 1.0). PhysioNet. https://doi.org/10.13026/8td2-g363.

Additionally, please cite the original publication:

Lehman, L.H., Moody, B., Deep, H., Wu, F., Saeed, H., McCullum, L., Perry, D., Struja, T., Li, Q., Clifford, G., Mark, R.G. (2023). VTaC: A Benchmark Dataset of Ventricular Tachycardia Alarms from ICU Monitors. Proceedings of the 37th International Conference on Neural Information Processing Systems (NeurIPS 2023), Datasets and Benchmarks Track.

Please include the standard citation for PhysioNet: (show more options)
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 101 (23), pp. e215–e220.

Abstract

False arrhythmia alarms are a persistent problem in intensive care units despite considerable effort from industrial and academic algorithm developers. Among the various arrhythmias, ventricular tachycardia (VT) is particularly challenging to detect accurately, as achieving both high sensitivity and high positive predictivity has proven difficult. We present an annotated VT alarm database, VTaC (Ventricular Tachycardia annotated alarms from ICUs) consisting of over 5,000 waveform recordings with VT alarms triggered by bedside monitors in the ICUs. Each VT alarm in the dataset was labeled as true or false by at least two independent human expert annotators. The dataset comprises data collected from ICUs in three major US hospitals and includes data from three leading bedside monitor manufacturers, providing a diverse and representative collection of VT alarm waveform data. Each waveform recording comprises at least two electrocardiogram (ECG) leads and one or more pulsatile waveforms, such as photoplethysmogram (PPG or PLETH) and arterial blood pressure (ABP) waveforms.


Background

Bedside monitors in ICUs have produced a significant volume of alarms, a considerable proportion of which are false alarms [1,2,3,4]. False arrhythmia alarms in intensive care units (ICUs) pose a significant challenge, leading to alarm fatigue among healthcare providers and potentially compromising patient care. These false alarms not only contribute to increased cognitive load on clinicians but also have the potential to mask true arrhythmias, thereby endangering patient safety. Ventricular tachycardia (VT) alarms are among the most frequently occurring life-threatening arrhythmia alarms [1], and false VT alarms have proven to be the most difficult to detect reliably [3,4,5,6,7].

Several annotated VT alarm waveform datasets have been made publicly available. For instance, Aboukhalil et al. [5] developed false arrhythmia alarm reduction algorithms using 1,900 annotated VT alarms from the MIMIC II database [8]. The PhysioNet Challenge 2015 dataset includes a total of 562 annotated VT alarms, with 341 alarms in the training set and 221 in the test set [3,4,9].

While previous algorithms [ 3,4,5,6,7] show promise in identifying false arrhythmia alarms, their effectiveness has often been evaluated or developed using single, small, or relatively homogeneous datasets. This limitation hinders their generalizability and real-world applicability. The introduction of this annotated VT alarm dataset offers a valuable opportunity to overcome this challenge. By encompassing data from diverse sources, this dataset enables the evaluation and refinement of algorithms in a broader context, spanning a wider range of monitoring devices and clinical settings.


Methods

We extracted and compiled a dataset of 18,465 VT alarm waveform events, derived from 2,376 unique patient waveform records from bedside monitors produced by three leading commercial vendors [10]. These records were sourced from multiple ICUs across three major U.S. hospitals, ensuring a diverse and representative collection of waveform data. Each recording in our dataset consists of a 10-minute segment surrounding the onset of the ventricular tachycardia (VT) alarm, capturing 5 minutes of waveform data before the alarm and 5 minutes after. To maintain diversity, we randomly selected up to five alarm events from any individual patient record, resulting in a total of 5,742 events for annotation. This approach ensures a balanced sampling of events across different patient records, avoiding the over-representation of any single record. All waveform records were de-identified to remove identifiable information such as patient names, dates, and medical record numbers. The signals were uniformly resampled to 250 Hz, and all signal labels were standardized to align with the nomenclature used in the PhysioNet Challenge 2015 database [3,4,9].

Annotation Process

Following the PhysioNet Challenge 2015, a VT episode is defined as five or more consecutive ventricular beats with heart rate higher than 100 beats-per-minute (bpm) [3,9]. Expert annotators were randomly assigned batches of VT alarms to annotate. Each VT alarm event was reviewed and labeled by at least two annotators independently. Annotation was performed using an open-source annotation platform, PhysioTag [11,12], which enables experts to collaboratively annotate physiological waveform records using a standard web browser. Please see [11] for a detailed description of the annotation platform, and an illustrative example of the user interface for annotating the VT alarms. For our task, annotators were given the options of “True” for when they believe the alarm was correct, “False” for when they believe the alarm was incorrect, “Uncertain” for when they were unsure which annotation to assign, “Reject” for when the alarm was unreadable due to noise, artifacts, or other reasons. In order to reconcile conflicts between two annotator decisions, an adjudication process was implemented to resolve the conflicts. These disagreements were resolved either through direct one-on-one discussions between the annotators involved or by an adjudicator’s vote to break the tie. The annotation team consists of six annotators, including an arrhythmia analysis expert physician, and a highly-experienced board certified cardiac arrhythmia technician. The team also includes three clinicians, and one biomedical signal processing engineer specializing in arrhythmia.

A total of 5,742 events were annotated by at least two independent annotators. Two independent annotators reached unanimous decisions on 4,534 (78.96%) events, whereas 21.04% (N=1,208) of the events received conflicting labeling decisions by two human annotators. Among the events with conflicting decisions, 816 (66.55%) were adjudicated. After removing 392 un-adjudicated events, a total of 5,350 alarm events received final labeling decisions. After excluding "Rejected" and "Uncertain" events, the final dataset in this release contains 5,037 events.


Data Description

The VTaC dataset [10] contains 5,037 annotated VT alarm events, among which 1,441 (28.61%) are true alarms. The VT alarms were automatically generated by commercial patient bed-side monitors from ICUs of three major US hospitals. Each waveform record in the current release consists of a 6-minute segment that encompasses the onset of the VT alarm. This segment includes 5 minutes of waveform data preceding the alarm onset and 1 minute following it. Thus, the alarm onset is at the end of the 5 minute mark of each waveform record in the file folder. Each waveform recording contains ECG leads and one or more pulsatile waveforms (photoplethysmogram and/or arterial blood pressure waveforms). For a more detailed description of the VTaC dataset, please see [10].

The waveform files (in the waveforms folder) are stored in WFDB format [13], the PhysioNet recommended format for waveform recordings. The data are organized based on patient waveform records where each sub-folder represents a patient waveform record. Each sub-folder contains up to five waveform records, each corresponds to a VT alarm event selected from that patient record. All signals were uniformly resampled to 250 Hz.

The final labeling decisions for each of the VT alarm events are listed in the CSV file event_labels.csv Each row represents the final labeling decision corresponding to a VT alarm. The first column record contains the patient waveform record name, and the event column contains the unique event name corresponding to a VT alarm in the patient waveform record. As a part of the de-identification, all waveform record and event names are randomly generated surrogate names. In this dataset, a patient waveform record can have up to five VT alarm events. The column decision contains the final decision of the human annotator for the corresponding VT alarm.

The CSV file benchmark_data_split.csv contains the train/validation/test set split used by machine learning algorithms for VT false alarm reduction in [10].


Usage Notes

This dataset is intended for developing algorithms for false arrhythmia alarm reduction. Please cite [10] when using this dataset. Code and scripts for machine learning algorithms presented in VT false alarm reduction reported in [10] can be found at the project GitHub website [14]. A limitation of this dataset is the absence of detailed clinical information accompanying the waveform recordings. We leave the collection of matched clinical data for future research endeavors.

To visualize the waveform records, please click on the "Visualize Waveform" button above the file panel, and select the records and events of interest to display. The WFDB Python package [15] can be used to load the waveform records in WFDB format.


Release Notes

This is the first release of the VTaC dataset (Version 1.0).


Ethics

This dataset is a compilation of patient waveforms sourced from multiple institutions, and the process of collecting this data has received approval from the respective Institutional Review Boards (IRBs) of each participating institution. The project was approved by the Institutional Review Boards of the Massachusetts Institute of Technology (Cambridge, MA). Requirement for individual patient consent was waived because the project did not impact clinical care and all protected health information was deidentified.


Acknowledgements

This research is funded by NIH Grant NIH R01 EB030362.


Conflicts of Interest

None.


References

  1. Drew, B.J., Harris, P., Zègre-Hemsey, J.K., Mammone, T., Schindler, D., Salas-Boni, R., Bai, Y., Tinoco, A., Ding, Q., & Hu, X. (2014). Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PloS ONE, 9(10), e110274. https://doi.org/10.1371/journal.pone.0110274
  2. Cvach, M. (2012). Monitor alarm fatigue: an integrative review. Biomedical Instrumentation & Technology, 46(4), 268–277. https://doi.org/10.2345/0899-8205-46.4.268
  3. Clifford, G.D., Silva, I., Moody, B., Li, Q., Kella, D., Shahin, A., Kooistra, T., Perry, D., & Mark, R.G. (2015). The PhysioNet/Computing in Cardiology Challenge 2015: Reducing false arrhythmia alarms in the ICU. In 2015 Computing in Cardiology Conference (CinC), pages 273–276.
  4. Clifford, G.D., Silva, I., Moody, B., Li, Q., Kella, D., Chahin, A., Kooistra, T., Perry, D., & Mark, R.G. (2016). False alarm reduction in critical care. Physiological Measurement, 37(8), E5–E23. https://doi.org/10.1088/0967-3334/37/8/E5
  5. Aboukhalil, A., Nielsen, L., Saeed, M., Mark, R.G., & Clifford, G.D. (2008). Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. Journal of Biomedical Informatics, 41(3), 442–451. https://doi.org/10.1016/j.jbi.2008.03.003
  6. Lehman, E.P., Krishnan, R.G., Zhao, X., Mark, R.G., & Lehman, L.H. (2018). Representation learning approaches to detect false arrhythmia alarms from ECG dynamics. In Machine Learning for Healthcare Conference, pages 571–586. PMLR.
  7. Zhou, Y., Zhao, G., Li, J., Sun, G., Qian, X., Moody, B., Mark, R.G., & Lehman, L.H. (2022). A contrastive learning approach for ICU false arrhythmia alarm reduction. Nature Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-07761-9
  8. Saeed, M., Villarroel, M., Reisner, A.T., Clifford, G., Lehman, L., Moody, G., Heldt, T., Kyaw, T.H., Moody, B. & Mark, R.G. (2011). Multiparameter intelligent monitoring in intensive care II (MIMIC-II): A public-access intensive care unit database. Critical Care Medicine, 39(5), 952–960. https://doi.org/10.1097/CCM.0b013e31820a92c6
  9. Clifford, G., Silva, I., Moody, B., Mark, R.G. (2015). Reducing false arrhythmia alarms in the ICU: The PhysioNet/Computing in Cardiology Challenge 2015 (version 1.0.0). PhysioNet. https://doi.org/10.13026/c9fg-a467
  10. Lehman, L.H., Moody, B., Deep, H., Wu, F., Saeed, H., McCullum, L., Perry, D., Struja, T., Li, Q., Clifford, G., & Mark, R.G. (2023). VTaC: A benchmark dataset of ventricular tachycardia alarms from ICU monitors. Proceedings of the 37th International Conference on Neural Information Processing Systems (NeurIPS 2023), Datasets and Benchmarks Track.
  11. McCullum, L., Saeed, H., Moody, B., Perry, D., Gottlieb, E., Pollard, T., Borrat, X., Li, Q., Clifford, G., Mark, R.G., & Lehman, L.H. (2022). PhysioTag: An open-source platform for collaborative annotation of physiological waveforms, Computing in Cardiology (CinC).
  12. McCullum, L., Moody, B., Saeed, H., Pollard, T., Borrat Frigola, X., Lehman, L., & Mark, R. (2023). PhysioTag: An open-source platform for collaborative annotation of physiological waveforms (version 1.0.0). PhysioNet. https://doi.org/10.13026/g06j-3612
  13. Moody, G., Pollard, T., & Moody, B. (2022). WFDB software package (version 10.7.0). PhysioNet. https://doi.org/10.13026/gjvw-1m31
  14. Code repository for the VTaC project. https://github.com/ML-Health/VTaC (Accessed August 31st, 2024).
  15. Xie, C., McCullum, L., Johnson, A., Pollard, T., Gow, B., & Moody, B. (2023). Waveform Database Software Package (WFDB) for Python (version 4.1.0). PhysioNet. https://doi.org/10.13026/9njx-6322

Share
Access

Access Policy:
Anyone can access the files, as long as they conform to the terms of the specified license.

License (for files):
Creative Commons Attribution-ShareAlike 4.0 International Public License

Corresponding Author
You must be logged in to view the contact information.

Files

Total uncompressed size: 4.0 GB.

Access the files

Visualize waveforms

Folder Navigation: <base>/waveforms
Name Size Modified
Parent Directory
003c13
004bad
004f0c
004fdb
0057fe
0060de
009145
009907
009bf0
012473
012c46
015f23
017841
0179fd
0183b7
01a952
01d569
01e98d
020311
022448
0228b7
022a37
022b4c
023acb
026e9e
02898a
028d59
02a903
02af26
02c517
02cf88
02d43c
02fdb3
03142b
031b11
032ead
033a48
0372d9
038d15
0390bc
03a42b
03abd6
03f310
046499
0483c4
049c31
04bba5
04ded3
051e75
0526c6
054292
05d9b7
05db4c
05f8bc
060c2b
0613e6
06273c
062b3a
063679
0663ad
0670d9
068d6d
069167
069d07
06a58e
06ad79
06b4b9
06c180
070207
0719c6
071dfb
0723d1
0768a2
076f06
0785e1
07a74d
07acb4
07bb1e
07ec7d
07ed7b
07fb77
080880
08219a
087557
087cbe
08bf28
08cb09
091c9c
095e0f
097a2e
097d49
099dac
09c653
09d095
09fc30
0a0749
0a3612
0a42ab
0a4417
0a4bb4
0a7cd2
0a9735
0aa336
0ab80e
0af69b
0b2a48
0b7d59
0bca48
0c0cad
0c17ec
0c1fdf
0c3227
0c351a
0c61a7
0d21e6
0d35eb
0d3c0c
0d4402
0d5695
0d6969
0d9ed9
0db762
0dbb35
0dddce
0de09f
0de4e1
0e3286
0e3dd4
0e4155
0e8098
0ea170
0ea8d6
0ec571
0ef0a5
0ef80c
0efb9a
0f0a05
0f0c5a
0f26ba
0f48ad
0f54ed
0f638f
0f7911
0f92d8
0fa59d
0fe577
0fec9e
1012c7
1028bb
103f12
105bad
108c4d
10e835
10ebf5
10edeb
1142f9
1150c0
1154ba
118aeb
119529
11971c
11b0c8
11e008
11f15e
120ecf
124de0
12605a
126214
1295df
129f88
12ab3a
12ad1f
12ad80
12b65c
12b8ee
12e341
12ea26
12ed3d
12ee54
132641
132657
135005
136d39
13803d
13b8a9
13d1d8
13e3ec
141469
143a44
143c83
1451bb
1454a0
146191
1461ec
146343
1498d1
14a47d
14aa55
14c702
14dffe
14fbd2
1559fe
157e21
159285
15a596
15aa71
15d32f
160206
160c44
160d07
167ae3
167dac
168dee
16ad03
16c95a
16e177
170f0b
1746a1
177d38
1786ac
179e09
17a713
17c703
17f773
17f8cd
180ecf
181000
186e02
18ad47
18b868
190375
193a92
194f2f
19500d
195fb9
196a14
1970b3
197302
19770e
19a276
19a6d0
19d61c
19daf9
19f9e6
19fbc0
1a7f9c
1a8d61
1aa697
1abd5b
1af764
1b1a94
1b3a4e
1b3f76
1b4c5c
1b536a
1b57e4
1b60cd
1b6d24
1b7364
1ba6e1
1bb870
1bd2fb
1bd335
1c458a
1c45af
1c4654
1c74db
1c84cd
1c995f
1cedb9
1d125c
1d3ebd
1d5b47
1d76ad
1db42e
1de01c
1de5d5
1de745
1ded55
1df27c
1dfbf1
1e0f72
1e2219
1e4582
1e519d
1ecc03
1ee419
1f21bc
1f46b9
1f5311
1f824f
1f9514
1fb598
1fbe7b
203f8a
204166
20666e
209230
20ed4e
20fcfe
210505
21448d
2181c7
21a90c
21b312
21f7ec
22017a
220810
22158d
222002
224da2
224ec6
224fb7
2262fe
226326
226c8f
227bb7
22c27d
230a33
2310a5
231688
23462c
236e37
237a14
23a89e
23ade4
23ccbd
23eac2
2403d4
243640
2445a0
244c70
245c2f
2491c3
24af67
24bb9d
24be9d
24ed5c
2510fa
2521d3
255175
2558dc
255c51
25c3b0
25e32c
263b5a
263bc4
267558
26a73b
26e973
277f43
27986d
27c38f
27ded1
27f014
280070
284c8a
285c8c
286417
28a58a
28d7d6
28e999
2919f2
291c41
292791
292b2b
294a0e
295e5b
2968f2
2969cc
298b3f
2993a0
29abea
29c268
29e043
29eed9
29f1b9
29f7ed
2a3f21
2a5065
2b0e6d
2b2388
2b3e21
2b61aa
2b9122
2ba384
2bc26a
2bd95c
2be82a
2c0a6d
2c1ded
2c5413
2c9414
2c9bed
2cc536
2ce8b5
2ce9c3
2cfc51
2d2ba9
2d32a2
2d43b3
2d530d
2d6aee
2d79f8
2d880d
2db903
2dec38
2dede0
2df0a2
2e0240
2e033d
2e5404
2e7ed7
2e8a04
2e8fc0
2e92fc
2ec490
2edae4
2ef1d5
2efece
2f3457
2f5de1
2f65e3
2f6ea7
2fb87d
3018f8
305eda
3075d5
30936e
30d2a2
30db19
30f330
311236
31352c
31593f
315c15
317c8d
317eec
318840
31a8c5
31bd5c
31dabf
31ec21
32106c
3212c5
32406c
324c5e
324f8a
325428
325639
327085
32828e
328a5c
3290a7
32933e
3294fd
32b1e7
332fad
333f25
333f31
33a0d2
33c4b3
3401c9
342760
344c1b
3467d5
346aa4
347f9d
34955d
34c8c6
34f1a4
35156a
35655d
3578fa
3582f2
358a7d
35f298
35fb75
36093f
364137
36c758
3710f7
37a2ad
37bc7d
37eb78
38278a
382ae1
383d06
38531d
3895d9
389d72
38ee86
38fadb
392313
392907
392f6a
3933fb
393495
393990
3942ea
396205
39cd12
39d832
39ee26
3a007b
3a032d
3a177c
3a2e14
3a3c64
3a4c78
3a577a
3a67d4
3a9263
3abf02
3abfed
3ad93a
3b05ea
3b5603
3b6e12
3b719f
3b7c80
3ba184
3bc416
3bd682
3c1c48
3c2568
3c2aa3
3c4fb3
3cb308
3ce066
3ce553
3cf3c8
3d2d74
3d4137
3d5eda
3d6b5b
3d9a19
3db5fd
3e1aca
3e3490
3e56d2
3e6de2
3ec98f
3ee722
3f06b0
3f10da
3f4b4d
3f793c
3f978d
3fb01c
3fc39a
3fdeb2
40291b
403679
4047a8
4053a3
4069df
408439
4092b1
40a8af
40af97
40d0d4
40efce
40fb2e
411942
415db1
416de9
4174ea
41aad4
41bf06
42732c
4284e8
432747
4345ef
4366c4
43be40
43d1c6
43d327
440ea6
4422c7
4433a5
444125
44453b
445745
445ce9
449efa
44a2ba
44fc12
44febe
45339c
453952
453a56
457e2e
458cd2
45ae29
45b43c
45d155
45fd8e
460be9
462995
4632f9
463b69
464619
464cad
4654b0
466cf7
467b4e
46c3bb
46dcd3
46eae6
47265e
472d7f
47374b
47493f
475a14
47783b
4780b6
47839a
47addc
47ef10
481396
483b22
486b46
487aa2
48818a
48efbd
491f65
49285a
494b7f
495452
497dea
498364
498866
4993d4
49b36c
49bf90
49df93
4a177a
4a3b27
4a5581
4a563a
4a8013
4aa89f
4ab4be
4ab5d1
4acfd9
4ae46e
4aebfd
4b0c2a
4b21ba
4b7d62
4baad8
4be58b
4bf4ae
4c0519
4c20a3
4c247a
4c3177
4c4482
4c9912
4ca842
4cf6d7
4d2d90
4d2e19
4d4362
4d5d36
4d8761
4d9e3c
4da360
4da5dc
4dabe9
4db066
4df522
4e10f4
4e137a
4e4818
4e780c
4ead5f
4eb0ba
4eccec
4ed13e
4ee4ff
4eec7b
4eee0c
4f1e7c
4f2279
4f2a83
4f38d0
4f57df
4f9634
4f975a
4faa3d
4fb450
4fdfc2
4ff72f
5000d8
501cbd
504414
50502d
507679
50920d
50970a
50dd77
51289e
514836
516730
516e29
517e2f
518308
5191fd
51be10
51c892
522399
524a02
5267cc
528079
528467
52af17
538f99
53a7f5
53c9e0
53eca0
53f320
54003d
547855
5497be
54a4f0
54a6d6
54a97b
54b6a8
54ba5e
54dd63
553065
55ad66
55d832
55eaca
55eae1
55faaf
560e8c
56456f
564fea
569a51
569ea7
56a752
56aa70
56b59c
56bab8
56dc34
570d2d
5753a0
5767d7
576b24
577fe7
57ac47
57c03c
57c3bb
57c3cc
57dd2e
580804
583f6b
5848b4
584bde
58a30b
58b865
58f2f7
590598
5934e6
595c02
595ff5
59695f
59751b
59911b
59a62c
59b570
59c172
59c8a3
59cf68
59d5bc
59ebd5
5a409b
5a49ba
5a55c2
5a579a
5a5ade
5a6284
5a6381
5a6d27
5a9e47
5ab2f2
5ac33b
5ae421
5b063e
5b11ad
5b11e3
5b33a3
5b5ba6
5b6d8d
5bbe4b
5c27cb
5c36ca
5c3b15
5c4a62
5c4be6
5c73f0
5c7a4e
5c80dc
5c973e
5cd40c
5ce5ed
5cffda
5d218d
5d24ae
5d272d
5d48fa
5d5970
5d747e
5d8987
5d9517
5da34b
5daa67
5db488
5db7b6
5db855
5dbcf9
5dd0ca
5dd3df
5ddd18
5e15c3
5e229f
5e308c
5e635f
5e6905
5e91d7
5e9288
5e9530
5ebe77
5f4abe
5f5b77
5f9cbe
5fc030
5fd96e
601e75
604276
605565
60a041
60c744
60d8f8
60ec09
60fa71
60fac5
610366
610da7
611e0a
61ffc6
623dd0
624dbc
625652
625852
62733f
629180
629a36
62fb4f
6309d8
633cb4
6371f1
638c25
63c9e9
63cc05
63d29e
6403c0
64253a
643779
643b15
643d0d
64519b
6459cf
6469ef
64e673
650ffc
651603
652733
653646
654c76
65cabd
65eea0
65ff4e
663acd
664003
665002
665f0a
667804
667a2e
66a82a
66aae3
66d94f
66ea91
66ed61
671d15
67b8ac
67c2d6
67c906
67e542
67e548
67f669
683586
683c84
684d6c
68961c
6899a8
68a2e6
68f71a
690350
691ad6
693e98
69471f
694f24
6970f7
6988bd
69ea93
6a0b0a
6a3f44
6a566e
6a5fb9
6a6fad
6a7343
6a807b
6a9632
6aa14d
6ac888
6adcf6
6addd0
6ae3b8
6ae56a
6af5c4
6b1243
6b1d2a
6b42ec
6b4ebd
6b5766
6b6a0d
6b6bbb
6b6e52
6bd57e
6bf70d
6c0961
6c4510
6c7676
6c7dfd
6c7eed
6cb17a
6cb58b
6cc4fc
6cc920
6cdfc8
6d1bb1
6d3c8c
6d3dc9
6d4f58
6d56dd
6d8601
6d944b
6da353
6dcd07
6df7e7
6e12bb
6e1822
6e465b
6e6392
6e779b
6e7cc7
6e9021
6e90ca
6eb4e1
6ed021
6ed561
6eebce
6eeca2
6efef8
6f0e76
6f3745
6f4eb3
6f95c0
6faf15
6fcd15
6fd0aa
6ff97b
70001e
703f96
709019
70dff1
70e926
70e960
712013
7160d7
716113
717439
7182d0
719baf
71a261
71b6d9
71b915
71bb14
71e45a
7262d8
7268f1
728725
72a198
72bcc2
72c55a
72f035
730a49
732620
73291b
735baf
7365d3
7367a5
737c1c
7388a3
73b113
73dd23
73f7f3
74072a
743a44
74825b
7484a3
74982a
74a473
74da81
74e640
7534db
7599c0
759d40
75b989
75baac
75c5d8
75c9b9
7617b6
76182d
763992
76490e
769bb3
76a013
76a5b9
76cb15
76d521
76e4b1
76e7b3
77136c
772573
772f65
776535
777f3d
77965a
77c416
780206
7810e4
787166
7889ff
78baa9
78da0b
790f0d
7924fe
794ad4
795a17
797790
79b9e8
79c471
79ec24
7a060a
7a1960
7a300f
7a589d
7a6b31
7a9374
7a9471
7a9af6
7ac62a
7b70b3
7baefd
7bc2e2
7c0008
7c12a5
7c3e12
7c3efc
7c5251
7c94d3
7c9556
7cb6a8
7cb6c9
7cfeee
7d010a
7d1dab
7d605c
7d99de
7dce62
7e3f58
7e6faf
7e7aa6
7e870b
7ea121
7ea9dc
7eaf69
7ed34c
7ed4dc
7eed76
7eeffb
7ef5c8
7f02b0
7f1581
7f15cd
7f19dc
7f1c9c
7f2d94
7f2e07
7f3673
7f4b16
7f4f1e
7f5d0c
7f641f
7f6987
7f85fb
7f9227
7fa061
7fc1a3
7fc1ae
801a7d
804d18
80742f
80837d
809941
80b3bf
80be34
80c130
80e881
80f507
80fee3
812446
813467
81413f
815f94
816043
817140
81b012
81be77
81dd61
81e519
81f468
81f5cf
820d8c
8234d1
8258e1
8258e7
82ad21
82d5a3
82e680
83329f
834f95
838af3
83909f
83b15e
83ef57
840a12
846e5d
84860e
84b436
84b4ab
85233f
85382e
854cb6
854da7
859a6a
859aad
86031a
8617ba
863d1c
865cce
866cd1
8679c0
868077
86a76f
86ad8f
86b7d6
86bbbc
86dd45
86e33a
872e83
87726e
87a1cf
87b0aa
87cce2
87ce16
87dc09
87de1d
8832cb
8833f1
8868a3
886dfe
887ae2
888247
888e8a
88b429
88cd48
896cd0
8978a8
897986
89b2ee
89c133
89c2ba
89dd2a
89f08d
89f3f8
8a6d0b
8a6d2e
8a9ae3
8aa316
8ad46d
8af63e
8af7bf
8b0235
8b13b7
8b1d42
8b6734
8b9b0f
8b9b22
8bd33f
8bd72a
8bdc53
8bfa9d
8c1f64
8c28e9
8c536d
8c82c6
8c9ac3
8cedaf
8cef05
8cf287
8d5b72
8d798b
8d8131
8d8d82
8db6b0
8dc2c4
8dc512
8de950
8e2747
8e3374
8e4f57
8ea89f
8eaf47
8ef18f
8f04c9
8f09b9
8f0de9
8f1564
8f1a47
8f1f78
8f3763
8f4a1e
8f5c47
8f5f43
8f6740
8f767d
8f7c53
8f9a61
8fa32a
8fb50b
8fd55b
8fe118
8ff2aa
902590
909ab1
90e4d4
90f3da
90fd35
912257
9195d6
91ad50
91b74f
91c509
91f4a2
91f616
926922
92841c
9295ef
92cb5b
92ebb4
92fc27
92ff20
932c2e
93bfde
93c01f
93d7d7
93eabf
93efa9
93f0b7
941d9e
94249a
945b68
9460ca
946389
949365
94d581
94de60
9518e3
9550cc
957bd0
9596f5
95a4a5
95e7c7
95fb3b
960f75
961c41
962686
966aa3
967c16
96807b
968bcb
968dff
969200
9695a1
96de8d
96ee15
96f668
972318
97386c
975482
977419
97a8cc
97ad9f
97caf3
97e4f4
97e6b9
97e9d7
97f1a6
98119d
985f4f
989aa2
98aab7
98b52e
98c3ba
98ccdd
98d8c3
98df96
98f6f9
99062d
990e43
996dc7
99a06a
99c63c
9a0780
9a33b9
9a353c
9a4b72
9a4fe9
9a5e2d
9a71ed
9a7d38
9a7f53
9ae5d1
9b4085
9b5117
9b65ab
9b90c2
9be487
9be76a
9bf289
9c1640
9c210e
9c3b4b
9c58bc
9c7a8f
9c8497
9c8c06
9d0e83
9d14a4
9d1acd
9d1c60
9d32b8
9d59bd
9e5577
9e5cde
9e9b03
9eabf3
9ebe7f
9ebf71
9ede67
9ee0cc
9ee951
9eece8
9eee2d
9f130c
9f226c
9f2987
9f5432
9f6651
9f780c
9fca9d
9fd0f7
9ff503
9ffd59
a02958
a034b5
a035bf
a04679
a062ce
a064d0
a06fbf
a091ce
a095e6
a0b9d4
a0ee86
a10201
a10489
a11da1
a139b9
a19925
a19e7b
a1a039
a1a906
a1b0d8
a1c88c
a1dd82
a1f11f
a2070d
a226eb
a241ee
a24993
a253e5
a259c6
a25b52
a271af
a271b8
a28220
a296a0
a2a83d
a2d7e1
a2f258
a3126c
a32fdb
a34403
a377a6
a3a527
a3c0bd
a3ca2a
a3d08b
a3d0e9
a3d42a
a3fe20
a3ffbe
a416c1
a41df2
a42432
a43443
a43688
a46b5d
a48959
a48c8f
a4cc0f
a4ce23
a4d3f8
a4f651
a53896
a53ba0
a53d55
a54081
a556d4
a567ea
a5818b
a59b4d
a5a1e2
a5b5b8
a5c116
a5cbfd
a5fb0a
a600f7
a6765d
a68f8f
a6b4a9
a6c0f5
a7d551
a7f769
a7fffe
a85647
a86b03
a87064
a8b397
a8e00a
a8e34c
a90013
a925b9
a926f4
a92fd1
a93a49
a953ba
a96a30
a97a20
a97db1
a9b87a
a9cb51
a9e5b4
a9e9fb
a9f60f
aa1534
aa18f4
aa2248
aa472a
aa8a15
aa90d1
aaa7c1
aab426
aad36e
aaf484
aaf703
ab428d
ab6177
ab6a12
ab92b0
ab9e65
aba7ba
abadce
abb6df
abcf18
abcf54
abd9fb
abe824
ac0aa1
ac228a
ac2809
ac2a35
ac33c9
ac459e
ac4660
ac99d8
acb07c
ad300b
ad63c6
ad7978
ad8714
ada500
ada988
adbeb2
adf314
ae0a89
ae8b06
aed93a
aefab9
af0ced
af20f2
af4d98
af50c5
af5380
af550e
af71de
af96e7
b01f85
b02bc9
b02ea1
b05538
b08eed
b0cf98
b0e011
b11add
b15687
b18269
b1a4b4
b1a85a
b1af8f
b1c096
b1c9d3
b1d578
b1f0fc
b1f657
b215da
b259cd
b25e32
b27ddc
b29a2d
b2ae52
b2bcc5
b2e9a2
b30048
b325fe
b333ad
b345f3
b34eac
b37283
b3892f
b39253
b3b1e2
b3d331
b3e0b7
b3e775
b43c6a
b46934
b470c2
b4b253
b4b4ab
b4d0e1
b4d1d6
b4fade
b53d6d
b54120
b54b10
b575f3
b5a7eb
b5b8c8
b5ba70
b5c1a7
b5f57c
b602e3
b6106c
b61c0c
b61ce6
b635a7
b66739
b66a9e
b6a5ca
b6f5af
b6fcec
b720eb
b72cb8
b75584
b77195
b7d10b
b81a44
b82df8
b854a9
b863cf
b87209
b877cd
b8a447
b8adae
b8c9b3
b8f555
b91230
b92f91
b940fa
b98106
b9f875
ba060c
ba06f7
ba1c65
ba1f73
ba2190
ba26d1
ba2845
ba3513
ba50c9
ba5cf6
baae06
bad2ad
bad96a
bb19a3
bb2630
bb28c9
bb31c7
bb3ced
bb6b1d
bb7d96
bb7f41
bb7f6d
bb7fc7
bbaa90
bbcea6
bbe696
bbf5dc
bc0978
bc2151
bc34b2
bc4621
bcaa3f
bcbca2
bcc87f
bd026b
bd2624
bd292b
bd2f11
bd4995
bd5312
bd5520
bdcfb2
bdec2d
be6715
be8ec5
beb48e
beb727
beb93c
bedeec
bf254e
bf2e6d
bf3faa
bf59a5
bf6350
bf6396
bf8965
bf8a48
bf8b50
bfa262
bfe03b
bff3f6
c00262
c00504
c00b34
c0236f
c02d7f
c03436
c03d82
c06e90
c07b8a
c09d2d
c0b2bc
c0d67a
c0e014
c1124f
c12313
c15207
c1619b
c19061
c1967a
c19fb8
c1bf3b
c1d07a
c1ee99
c1f7bb
c20dc2
c228d5
c26c47
c26cde
c27dc4
c2c66f
c3072c
c31f8e
c357db
c36308
c36c5a
c39171
c3a4f1
c3b846
c3cdad
c3e632
c3ffdc
c400cf
c40972
c40f07
c4638b
c46bd0
c4acfa
c4b000
c4b1af
c4f802
c50b86
c5a2b5
c61a8f
c61ea4
c62c34
c63f94
c64847
c64cb5
c6504e
c66081
c67033
c6b72a
c6c178
c6f61f
c6fc52
c70aff
c743c3
c7e0d2
c83084
c83268
c838e4
c83dac
c86b0c
c885a4
c895c6
c8e523
c9000e
c9299a
c9c18a
ca01f2
ca0268
ca1816
ca1ad3
ca24f5
ca5b67
ca646b
ca6984
ca8712
cac267
cae797
cb1aef
cb8e54
cba78c
cbb303
cbbcd4
cbbf98
cbc518
cbca96
cbe0fb
cc24b3
cca37e
ccaab5
cccf1d
cd0d8b
cd3e4b
cd65f6
cd805d
cd9d1e
ce0eda
ce1578
ce3923
ce54db
ce5bdc
ce7885
ce8385
ce974c
cea16b
ceb6ab
ced35d
cf0572
cf4bb2
cf4e80
cf56a7
cf5ad3
cf70df
cfddb5
cfe739
d004f8
d01ec7
d060cf
d062db
d078ac
d08026
d08e65
d099f1
d0a82a
d0c7d4
d0c887
d12418
d1262a
d161e0
d178ad
d18b3b
d1a1f2
d1d350
d1e462
d1f3b5
d20b9f
d21023
d21b1b
d223f4
d241dd
d253ec
d25bd7
d29f25
d2ada7
d2b4a5
d2b9bf
d2cac0
d2eb6c
d30a6e
d3215c
d33407
d3359a
d34872
d35c1f
d35ef0
d381c8
d38bc7
d38d1e
d3f81d
d4127b
d42053
d46987
d469af
d4749a
d4a10b
d4a5d1
d4e67b
d4e855
d4ef5a
d509f3
d50ce9
d51783
d5210c
d53f3a
d587a5
d642b6
d64401
d6457a
d64a80
d64ca9
d674c4
d677f7
d68489
d70958
d7161e
d72b41
d73711
d73852
d739fe
d740c5
d756c0
d78033
d7a2b9
d7af8e
d7cfbb
d7d35d
d7d7af
d81dbb
d82835
d8354d
d84581
d84717
d85ded
d85f83
d8779a
d8b04d
d8da84
d8ed03
d90748
d9100e
d9145f
d930a2
d94155
d942ed
d9b309
d9bfb6
d9cd7c
da2d23
da62e7
daa9ea
dadac8
dae4b9
db0221
db1a05
db4d41
db7942
db798f
db7fc5
db8269
dbf216
dbf48a
dbfc24
dc01be
dc02fa
dc3f8b
dc791d
dcace9
dce254
dd114b
dd1565
dd410d
dd4e89
dd54d7
dd754e
dd7740
dd7eed
ddcd46
ddf5b5
de0de5
de10b3
de3f7c
de4fab
de59f1
de71b5
de7666
de9ac0
dea4fa
deb379
debabb
decbe1
ded13b
def4b4
df08ce
df1d70
df4aba
df577b
df61b2
df8187
df95b2
dfad2e
e069a6
e06d3b
e07c36
e08add
e0950c
e099bc
e09c60
e0c13d
e0f37f
e100f6
e11178
e15b6a
e1e841
e21631
e23751
e26c2e
e26c91
e28bc2
e29e94
e2aad2
e2c7d4
e2ddfd
e32820
e3295f
e33734
e34761
e34a73
e35a4a
e36023
e366ad
e369bb
e36be7
e3725f
e37fc5
e3c4d9
e3cd5e
e3f1a3
e403b2
e40bc3
e41de0
e4455d
e45a18
e47cab
e47db1
e48bce
e509ba
e50b1d
e5143e
e52dfe
e5843c
e58d24
e598cd
e5aac9
e5ad50
e5dcae
e5e2b3
e5e62b
e5e7e8
e60306
e606cc
e61a68
e635f4
e68c79
e69e0d
e6d437
e6f69f
e6fe5a
e704c3
e73058
e732e6
e75e11
e7740d
e7a022
e7e026
e7fc3f
e8123c
e826d2
e829c3
e82b9c
e8517f
e85448
e8c8af
e8fe71
e901eb
e92c0e
e9518c
e9873b
e9922a
e996b2
e9b721
e9d168
e9d203
e9df0e
ea28bf
ea5cda
ea638a
ea7752
ea7d44
ea9c01
eaa0cc
eab93b
eac688
ead6cb
ead795
eb3b08
eb4278
eb8780
ebc7c4
ebf42d
ec07fc
ec0bad
ec2a9b
ec532f
ec880d
eccd6b
ecf309
ed0334
ed0599
ed2f85
ed3efa
ed4349
ed6a8c
ed7817
ed8324
edb57f
edb6c4
eddc25
ede408
ee01a9
ee0851
ee4029
ee6770
ee70f2
ee7cd7
ee8818
ee9e12
eea386
eeb7e2
eed075
eee2a5
ef08da
ef0c95
ef88bb
ef90eb
efc9e2
f04819
f05a07
f081c3
f0b8b0
f0e114
f0f989
f104da
f11bc9
f11cdc
f15dee
f1784c
f1a039
f1b555
f1d82f
f1e349
f205c0
f20680
f23f75
f2ba6a
f2c70c
f2fa22
f325d8
f3705e
f378e4
f38162
f392f5
f39932
f3a11b
f3abbe
f3d41b
f3d6a8
f3e186
f41819
f430da
f43c46
f4488e
f44fa9
f454ad
f4ab86
f4b3a1
f4d516
f4e15b
f4faa4
f4ffc6
f5100c
f52125
f52bfb
f55846
f59739
f5974f
f5a640
f5aaf5
f5bb65
f5d5e4
f60fdf
f60ffe
f6579e
f67999
f67b15
f6fd4c
f7053f
f721c8
f73bf7
f77db4
f7877e
f7880c
f79331
f793f6
f7bfb6
f7c433
f7e46a
f7e46f
f83e5f
f8575f
f87bff
f87c90
f88909
f934ad
f944fe
f94d21
f9a492
f9a959
f9ab74
f9cd23
f9d231
fa0a92
fa25b1
fa58e7
fa5ed1
fa842f
fb023b
fb19fc
fb7dda
fb96fc
fb988c
fb996f
fbb47c
fbd08f
fbe3b2
fc099e
fc0a07
fc1365
fc4ff5
fc9dd7
fca8d8
fce7b9
fce8b4
fd6de1
fd77a6
fd9e3e
fda2b9
fdab26
fdb1b7
fdc5fe
fdf0d6
fe2e8c
fe333e
fe3612
fe46f9
fe817b
fe87a5
fe9bf2
fe9f80
fedf67
ff04e5
ff08c6
ff7587
ff8c49
ffad1e
ffad73
ffc5d1
ffe78d
ffecba