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Abstract

Current RR time series simulations are distinguishable

from real data by automatic algorithms. We hypothesised

that RR time series simulations could be improved by us-

ing time series data from naturally occurring phenomena.

20 records of annual river flow data for the river Tyne in

north eastern England were obtained. Each river flow data

record was used to generate a single 24 h simulated RR

time series with the property of self similarity. We com-

pared the standard frequency parameters ULF, VLF, LF

and HF normalised to the total power, for the simulated

RR, with those from physiological data from 20 subjects.

The river flow data produced realistic simulations of RR

time series with significant differences between physiolog-

ical and simulated series for VLF only. Time series data

from river flow or other naturally occurring phenomena

may provide useful components in producing RR time se-

ries with more realistic characteristics than current artifi-

cially generated data.

1. Introduction

The heart beat exhibits natural variability, apparent as

variations in the interval between each heart beat (RR in-

terval). This variability arises from complex physiolog-

ical interactions brought about, for example, by exercise

and breathing. RR time series from healthy subjects ex-

hibit some common characteristics underlying much inter-

subject variability. Notably, there may be a reduction in

heart rate during sleep so that RR increases for a period

of hours. Characteristically there are periods of high heart

rate due, for example, to exercise. RR is modulated by res-

piration and a frequency domain analysis of the RR time

series exhibits a characteristic increase in power over the

respiratory frequency range. Similarly, RR is modulated

by THM (Traube-Hering-Mayer) waves, thought to be due

to the blood pressure control mechanism, giving an in-

crease in power over a range of frequencies centred around

0.1 Hz. To aid quantification of these and other features of

the frequency spectra of heart rate time series, the spectra

have been divided into frequency bands: ULF (ultra low

frequency, ≤ 0.003 Hz); VLF (very low frequency, 0.003-

0.04 Hz); LF (low frequency, 0.04-0.15 Hz); HF (high fre-

quency, 0.15-0.4 Hz). Typically, heart rate spectra exhibit

a 1/frequency component in ULF and VLF which may re-

late to hormonal and thermoregulatory mechanisms, and

broad peaks in LF and HF corresponding to THM waves

and respiratory frequency respectively.[1]

Current simulations of RR time series use artificially

generated series, visually appear unnatural and may

be distinguished from physiological data by automatic

algorithms.[2, 3] Our hypothesis was that time series data

from naturally occurring phenomena, such as climate,

might be useful in providing more realistic RR time series

simulations.

2. Methods

2.1. Data

To test our hypothesis we obtained 20 records of an-

nual river flow data for the river Tyne which flows

through the city of Newcastle upon Tyne, UK. These

data were available from the National River Flow

Archive of the Natural Environment Research Council

( http://www.nwl.ac.uk/ih/nrfa/webdata/023001/g.html ).

We compared our simulated time series with real RR data

from 20 subjects without known heart disease randomly

chosen from 28 such records provided by PhysioNet for the

2002 Computers in Cardiology Challenge. The river flow

data from each year provided the basis of a single simu-

lated 24 h RR time series, so that 20 simulated series were

produced in total. For each year, daily values of flow vol-

ume were available. Hence, each annual river flow record

consisted of 365 sample points. Figure 1a provides an ex-

ample. The figure shows the daily flow for January through

December 1990. Clearly there is greatest flow in the win-
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Figure 1. River flow data for 1990: (a) Time series (Jan -

Dec), (b) Frequency spectrum.

ter months. The frequency spectrum is shown in figure 1b.

Two weekly and weekly cycles of rainfall and/or upriver

reservoir management actions are suggested by the peaks

at approximately 0.06 and 0.14 cycles per day respectively.

2.2. Simulating the RR time series

Our aim was to use only the river flow data without arti-

ficially generated signals to produce the simulated RR time

series. From each of the river flow data records an RR time

series was generated which exhibited both long and short

term variability.

2.2.1. Simulating long term RR variability

Inverting the river flow data and scaling both time and

amplitude axes provides a time series that exhibits long and

medium term variability characteristics similar to those ex-

pected of RR time series over the 24 h period. Figure 2 il-

lustrates this and is derived from the river flow data shown

in figure 1. The characteristic slowing of heart rate or in-

crease in RR during sleep is expressed by the correspond-

ing fall in summer river flow. Periods of high heart rate

or short RR, for example due to exercise, are expressed by

periods of high flow volume. Translating the 365 sample

points into a 24 h period provides a sampling interval of

approximately 4 minutes (24*60/365). This resolution is

adequate for simulating the medium to long term changes

in heart rate but is not sufficient resolution for the short

term variability which occurs on a beat to beat basis.

2.2.2. Simulating short term (beat to beat)
RR variability

Realistic simulation required beat to beat RR variability

to be simulated. To achieve this using only the river flow

0 4 8 12 16 20 24
0.4

0.6

0.8

1.0

1.2

Time (h)

S
im

u
la

te
d

 l
o

n
g

 t
er

m
 R

R
 (

s)

Figure 2. Simulated long term RR (365 sample points).

data we used the property of self similarity. Self similarity

is a property of many natural processes where features of

the process exhibit similar characteristics at different time

scales.[4] This was achieved by repeatedly concatenating

sections of random interval from the long term RR sig-

nal (see figure 3). Additionally, the concatenated sections

were randomly amplitude scaled. A further consideration

was the frequency characteristics of the simulated signal.

Compressing the river flow data into a shorter time inter-

val had the beneficial effect of translating the spectra of the

river flow data to frequencies more typical for RR data. By

assuming a sampling rate of 5 Hz for the compressed river

flow data, so that the 365 samples of each annual record

of river flow compressed into 73 s, the simulated heart rate

time series exhibited frequency characteristics similar to

those from physiological data. In real heart rate data, a

sample point occurs at each heart beat. This interval is of

course variable but would be around 1 s for a subject at rest.

It was necessary to decimate the short term RR sections to

give a sample interval of 1 s.

2.2.3. Combining the long/medium and short
term RR variability signals

The RR time series for each river flow record was de-

rived by combining the long and short term variability sig-

nals. For each of the 365 samples comprising the long term

RR signal, 18 sections of short term RR signal of variable

length and amplitude were generated and combined with

the long term signal using the formula

RR = LT (i)+
j

18
(LT (i+1)−LT (i))+ST, j = 1 : 18

where RR is a section of simulated RR time series,

LT (i) is the ith long term RR sample and ST is a short

term RR section. 18 sections of variable length short term

RR signal for each sample of the long term RR signal were
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(2) Interpolate the LT signal...

(1) Take one sample period of the LT

(3) Generate 18 ST signals from random scaling of the
original data...

(4) Add the ST signals to the interpolated LT signal.

Figure 3. Method of combining the long term (LT) and

short term (ST) RR signals.

found to be sufficient for generating simulations of approx-

imately 24 h duration. Figure 3 illustrates the formation of

the RR time series.

The resultant signal was scaled so that the simulated RR

had a maximum between 1.0 to 1.2 s and a minimum be-

tween 0.4 and 0.6 s. These were assigned randomly for

each simulation to achieve sufficient variability between

individual simulations necessary for inter-subject variabil-

ity. The values are typical physiological ranges for healthy

subjects.

2.3. Assessing the simulated RR signals

We compared the standard frequency parameters ULF,

VLF, LF and HF normalised to the total power, for the

simulated RR, with those from the physiological RR time

series using the Student’s t-test.

3. Results

Figure 4 shows two examples each of simulated and

physiological RR time series and their associated fre-

quency spectra. The simulated data are shown in the top

two panels and the physiological data in the bottom two

panels. The most notable difference was that most of the

variability in the simulated signal lay below the mean level

giving a ’flat top’ appearance to the plots. In the physio-

logical data variability lay both above and below the mean

level. In the frequency domain the simulated data exhibited

’respiratory’ peaks very similar to the physiological data.

The ULF, VLF, LF and HF ratios for all physiological and

simulated data are given in table 1. These indicate there

is good agreement for the frequency content of the signals.

The exception was that the simulated data lacked sufficient

power in the VLF band which is usually characterised by

the 1/frequency component.

Table 1. Mean (sd) of frequency parameters for physio-

logical and simulated data.

Physiological Simulated p

ULF 0.82 (0.06) 0.84 (0.03) NS

VLF 0.10 (0.03) 0.07 (0.02) < 0.0008

LF 0.04 (0.02) 0.04 (0.01) NS

HF 0.03 (0.02) 0.04 (0.01) NS

4. Discussion and conclusions

We have investigated a novel approach to simulating RR

time series using climatic data. We chose river flow data

because it appeared to have long term variability character-

istics similar to physiological RR time series and because

of the availability of many data records. The simulations

exhibited reasonable time and frequency domain charac-

teristics but lacked sufficient variability in RR interval and

had too narrow a spectrum of 1/frequency component in

the VLF band. Further work is need to enhance our al-

gorithm, but we hope to have inspired a new approach to

the problem of RR time series simulation and predict that

other naturally occurring phenomena could be used to gen-

erate RR time series perhaps indistinguishable from real

data. This approach may be extended to simulation of other

physiological phenomena and may be particularly benefi-

cial where there is a better understanding of the underlying
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Figure 4. Simulated (top 2 panels) and physiological (bottom 2 panels) RR time series and associated frequency spectra.

processes of the natural phenomena compared to the phys-

iological process.

Acknowledgements

PL, AJH and STK are supported by grant funding from

the EPSRC. EJB is supported by a fellowship from IPEM.

References

[1] Task Force of the European Society of Cardiology and the

North American Society of Pacing and Electrophysiology.

Heart rate variability. standards of measurement, physiol-

gical interpretation, and clincial use. Circulation 1996;

93:1043–1065.

[2] Smith FE, Bowers EJ, Langley P, Allen J, Murray A. Heart

rate variability characteristics required for simulation of in-

terval sequences. Comput Cardiol 2002;29:237–240.

[3] Moody GB. RR interval time series modelling: The Phy-

sioNet/Computers in Cardiology Challenge 2002. Comput

Cardiol 2002;29:125–128.

[4] Feder J. Fractals. New York: Plenum Press, 1988.

Address for correspondence:

Philip Langley

Medical Physics Dept.

Freeman Hospital

Newcastle upon Tyne

UK

philip.langley@ncl.ac.uk

976


