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Abstract

We analyse the heart rate variability data (HRV) us-

ing the concept of large-scale dimension densities (LAS-

DID). This method enables to analyse very short and non-

stationary data, such as HRV, and, hence, also short parts

of the data and to look for differences between day and

night. The circadian changes in the dimension density en-

able to an almost completel distinction between real data

and computer generated data from CiC 2002 challenge us-

ing only one parameter.

Furthermore, we analyse the data of 15 patients with

atrial fibrillation (AF), 15 patients with congestive heart

failure (CHF), 15 elderly healthy subjects (EH) as well as

18 young and healthy persons (YH). With our method we

are able to separate completely the AF group from the oth-

ers and the CHF patients show significant differences to

the young and elderly healthy volunteers.

1. Introduction

Annually, in the United States up to 450,000 people die

due to sudden cardiac death [1, 2]. Therefore, an accu-

rate and reliable identification of patients who are at high

risk for sudden cardiac death is an important and challeng-

ing problem. In this paper we introduce a measures of

complexity which may help to solve this problem when

applied to HRV. Observational data, such as HRV, often

are rather short and may be noisy. Different data analysis

techniques to understand complex processes observed in

nature[3, 4, 5] were developed. Linear approaches of time

series analysis are often not sufficient [6, 7] and most of the

nonlinear techniques [8] suffer from the curse of dimen-

sionality. Mostly, there are not enough points in the (often

non-stationary) time series to reliably estimate these non-

linear measures. The uncritical application of these meth-

ods especially to natural data, therefore, can be very dan-

gerous and often lead to serious pitfalls.

To overcome these difficulties, other measures of com-

plexity have been proposed, such as Renyi entropies, ef-

fective measure complexity or ε-complexity [9, 10]. They

are mostly basing on symbolic dynamics and are efficient

quantities to characterize measurements of natural sys-

tems, such as in cardiology [11, 12], cognitive psychol-

ogy [13] or astrophysics [14]. These methods are often not

sufficient for very short data sets, so we focus in this pa-

per on another type of measures of complexity basing on

the method of LASDID [15] and apply this methodology

to HRV data. LASDID allows to analyse very short data

sets, so it is possible to calculate it for short parts of the

data and get an overview of the changes in the dimension

density inbetween 24 hours.

2. Method

LASDID [15] is estimated with a normalized Grassber-

ger-Procaccia algorithm, which leads to a suitable correc-

tion of systematic errors produced by boundary effects in

the rather large scales of a system. So it is possible to anal-

yse rather short and non-stationary data.

To calculate the correlation dimension D2 of a system

with the Grassberger-Procaccia algorithm [16], means

that the attractor firstly has to be reconstructed by em-

bedding. The embedded time series consists of vectors

{~x(t) = (x1(t), x2(t), ..., xm(t))}, where m is the embed-

ding dimension. Then one has to calculate the correlation

integral C(r, m) = 1
N(N−1)

∑

i 6=j θ(r − |~x(ti) − ~x(tj)|),

where θ is the Heaviside function and r is the radius around

each point within neighbouring points are counted for the

correlation sum. D2 is then defined as

D2 = lim
r→0

lim
m→∞

(d log C(r, m)/(−d log(r))), (1)

if this limit exists [16]. Because it is impossible to reach

the limit r → 0 in numerical calculations, one has to esti-

mate this dimension from larger distances, i. e. the right

hand side of eq. (1) becomes a distant dependent func-

tion D2(r, m). For low-dimensional attractors for small

r there often exists a rather large region in log2(r) where

this D2(r, m) is nearly constant. This part is referred to as

the scaling region [16]. For larger values of r, D2(r, m)
is decreasing because of boundary effects. It has been

shown, that with the growing dimension of the attractor

the number of data points needed to reach the scaling re-

gion is increasing exponentially [8, 15]. If the time series
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is too short, one only gets the part of D2(r, m) with de-

creasing values. With LASDID we are able to use this part

of D2(r, m) too.

The large-scale dimension density ρls(r, m) is defined

by normalizing the dimension density D2(r, m)/m of all

coordinates m of the embedded system to the dimension

density D2(r, 1) of one coordinate of this system [15]:

ρls(r, m) = D2(r, m)/(mD2(r, 1)). (2)

With this normalization we get a plateau for large scales r
yielding an estimate of ρls. The advantage of LASDID is

that it is possible to estimate it from rather short and non-

stationary time series. So we can cut every RR-interval

time series in M shorter pieces. For every of this short

pieces we calculate the large-scale dimension density via

eq. 2. This leads to a time series of ρls(t). For this time

series we calculate the mean value µρls
by

µρls
=

1

M

M
∑

i=1

ρls(ti), (3)

the standard deviation σρls
=

√

1
M−1

∑M

i=1(ρls(ti) − µρls
)2

and the coefficient of variation cvρls
by

cvρls
= σρls

/µρls
. (4)

For the calculation of LASDID we use an embedding-

dimension of m = 4 and a delay of τ = 1. But the results

are qualitatively the same with embedding dimensions be-

tween m = 4, ..., 8 and delay times between τ = 1, ..., 5.

3. Data

Physiological data very often show complex structures

which cannot be simply described and, therefore, their in-

terpretation is difficult. For the HRV data we are analysing

in this paper, it is well known that a metronomic heart rate

is pathological - the healthy heart is influenced by mul-

tiple neural and hormonal factors that result in variations

in RR intervals. Even after three decades of study, new

techniques continue to reveal properties of the time series

of RR intervals. Moreover, the simulation of such time

series is still extremely sophisticated and PhysioNet [17]

and Computers in Cardiology 2002 organized a challenge

to improve the momentary understanding of cardiovascu-

lar regulation. The aim of the first part of this challenge

was to construct simulations of the RR interval time series

spanning a full 24 hours with sufficient verisimilitude to

be taken as real. In a second part a blind classification of

a mixed set of real and simulated RR interval time series

shall be performed.

In this paper, we reanalyze the 46 time series from

the second part of this challenge using LASDID to test

whether new information in RR interval variation can be

revealed. Therefore, the first intention of this contribution

is to sketch our way of discriminating both types of time

series using LASDID.

The second intention of this paper is to demonstrate a

possible application for risk stratification. Therefore, we

analyze the data of 15 patients with atrial fibrillation (AF)

(15 male, age: 67 ± 12), of 15 patients with congestive

heart failure (CHF) (11 male, 4 female, age: 56 ± 11), of

15 elderly healthy subjects (10 male, 5 female, age: 50±9)

as well as of 18 young healthy persons (13 female, 5 male,

age: 34 ± 8). The data of the CHF patients and the young

healthy subjects are available from Physionet [17]. After

pre-processing [18], we calculate LASDID and compare

it with standard time and frequency domain parameters

as well as parameters based on symbolic dynamics which

have been recently successfully applied to other cardiolog-

ical problems [11, 19]. The following HRV parameters are

calculated from the time series: meanNN, the mean value

of normal beat-to-beat intervals; sdNN, the standard de-

viation of intervals between two normal; rmssd, the root

mean square of successive RR-intervals; and pNN50, the

percentage of RR-interval-differences greater than 50 ms.

Additionally, in the frequency domain the normalised low-

frequency (LFn) the ratio LF/HF are estimated. Finally,

HRV is analyzed by methods of nonlinear dynamics, es-

pecially symbolic dynamics [12, 19]: FWSHANNON, the

Shannon entropy of the word distribution and POLVAR10,

a measure to detect intermittently decreased HRV.

4. Results

First we use the method of LASDID to compare time

series of real ECG data with those of simulated data. We

subdivide every time series in pieces of 1000 heart beats

and calculate ρls. This leads to time series with fluctuating

values of ρls which are analyzed by calculating the mean

value µρls
, the standard deviation σρls

and the coefficient

of variation cvρls
. For real data we find values of µρls

be-

tween 0.5 to 0.7, whereas simulated data ranges between

0.4 to 0.9, only half of the models generated data which

also ranges between 0.5 to 0.7. Values near one indicate

a rather stochastic behaviour of the heart rate, values near

zero mean deterministic heart beats.

Furthermore real data shows stronger fluctuations in the

time series of LASDID, i.e. the values of σρls
are higher

for real data (σρls
from 0.09 to 0.17 for real data against

σρls
from 0.02 to 0.11 for simulated data) representing cir-

cadian varibility changes. The best discrimination result,

however, we get with the coefficient of variation cvρls
. It

makes it possible to distinguish between real and simulated

data by using only one parameter. Almost all simulated

time series can be detected with this method (see fig 1).

All calculations also have been done with more or less
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Figure 1. A comparison of cvρls
(Eq.4) of real data and

simulated data shows higher values for real data.

heart beats per interval. For less than 500 heart beats,

ρls can not be calculated reliably. Intervals of 2000 heart

beats give almost the same results as intervals of 1000
heart beats, for longer intervals more and more informa-

tion about the circadian changes gets lost.

The records of the real data always started and ended in

the morning, so it is possible to distinguish between day

and night. In the following we used the first 5 hours of

the 24 hours ECGs as day interval and the hours 17 to 22
as night interval. For real data we find higher values of

µρls
for the night for most of the records (day: µρls

=
0.546 ± 0.056; night: µρls

= 0.628 ± 0.069; P for day vs.

night < 0.001). But only few of the simulated data sets

show differences between two different time intervals.

The second intention of this paper was to demonstrate

a possible application for risk stratification. Therefore, we

compared the data of different pathologies and healthy sub-

jects. For patients with atrial fibrillation (AF) we find val-

ues of µρls
near one which indicates almost stochastic heart

beats. The coefficient of variation cvρls
for this patients is

very low (see tab. 1). This means, the AF-group separates

completely from the others. Elderly Patients with conges-

tive heart failuer (CHF) show higher values of cvρls
. The

highest values we find for elderly healthy patients (EH).

Table 1. The four different groups of patients are AF

(Atrial Fibrillation), CHF (Congestive heart Failure), EH

( Elderly Healthy) and YH (Young Healthy). They have

different mean values of µρls
(Eq.3) and cvρls

(Eq.4) (∗

p < 0.001 vs. AF group, ⋄ p < 0.05 vs. CHF group, ∇

p < 0.05 vs. EH group).

Group µρls
cvρls

AF 0.968 ± 0.021 0.024 ± 0.013
CHF 0.651 ± 0.125∗ 0.168 ± 0.053∗

EH 0.563 ± 0.042∗⋄ 0.209 ± 0.028∗⋄

YH 0.6062 ± 0.0392∗∇ 0.185 ± 0.021∗∇

Table 2. Correlations coefficients r (p-value) between

LASDID and HRV parameters (∗ p < 0.001, ⋄ p < 0.01,
∇ p < 0.05).

µρls
cvρls

meanNN 0.053 0.107
sdNN 0.227 0.152
rmssd 0.509⋄ 0.059
pNN50 0.510⋄ 0.046
LF/HF −0.607∗ −0.226
LFn −0.735∗ −0.163
FWSHANNON −0.659∗ 0.037
POLVAR10 −0.553⋄ −0.145

This means, low values of cvρls
indicate a higher risk of

heart disease. For the healthy persons we again find higher

values of µρls
for the night, but not in patients with conges-

tive heart failure (EH: day 0.54 ± 0.05, night 0.61 ± 0.05,

p = 0.002; YH: day 0.57 ± 0.05, night 0.67 ± 0.07,

p < 0.001; CHF: day 0.65 ± 0.13, night 0.66 ± 0.12,

n.s.). Thus, finding no circadian differences in µρls
is also

a pathological sign.

In order to investigate the physiological correlates for

LASDID we performe a correlation analysis. Pearson

correlation coefficients between different HRV parameters

and µρls
and cvρls

are given in table 2. Mean heart rate

(inversely related to meanNN) as well as sdNN, the stan-

dard deviation of the time series, does not correlate with

µρls
and cvρls

. For rmssd, the root mean square of succes-

sive differences, however, we see a significant relation to

µρls
, i.e. short term respiratory induced oscillation in HRV

plays an important role for LASDID. The highest correla-

tion we find for the normalized low frequency band around

0.1 Hz to µρls
, demonstrating that the Mayer waves hav-

ing the strongest influence for estimating LASDID. Inter-

stingly, cvρls
did not show any significant relation to HRV

parameters.

5. Conclusions

We presented a way of discriminating the 46 simulated

and physiological HRV time series from the 2002 Com-

puters in Cardiology challenge [20]. In a previous paper

[21] we used three different parameter which are based on

the distribution of RR-intervals, the circadian beat-to-beat

variability as well as the beat-to-beat dynamics. Using cut-

offs for these parameters, both time series groups could be

discriminated completely. The cut-offs were subjectively

chosen based on the knowledge of the normal ranges of the

used parameters. Moreover, it was an act of instinct which

parameter to choose first. To the best of our knowledge,

until today there was no single parameter for the complete

separation of the considered groups. Using the concept of
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LASDID, a nearly perfect classification was performed for

the first time. Only one of the simulated time series (no. 4)

was falsely classified as a real one. This time series showed

a comparable number of degrees of freedom (number of

modes) as compared to real data and this number showed a

circadian dependence. The modes, however, were choosen

too rigid - one can easily detect this time series as an artifi-

cial one from its frequency spectrum. The averaged LAS-

DID µρls
, characterizing the number of independent modes

(the working regulatory circuits) generating the heart rate

data, are statistically different between real and simulated

data. The circadian variation of the number of independent

modes cvρls
, however, enables a nearly perfect discrimina-

tion between physiological and artificial data. Real heart

rate data are characterized by circadian variability changes

due to different mechanisms. At daytime there are influ-

ences from physical or mental stress, food intake - in the

night you should have no stress, however, there are signif-

icant differences in the sleep stages, too. No simulation in

this data base was able to model all these effects.

In the second part of this paper we demonstrate its po-

tentials for risk stratification. Patients with atrial fibrilla-

tion show averaged large-scale dimension densities near to

one and can be completely discriminated from the other

groups. In addition, the group of the elderly healthy sub-

jects is statistically different in µρls
to the congestive heart

failure group. Interestingly, the young healthy volunteers

are not statistically different to the CHF group. This is due

to the fact that HRV decreases with age, here the number

of modes µρls
decreases too (see YH vs. EH in Tab.1).

In the CHF group µρls
is increased compared to elderly

healthy subjects. This means the number of independent

modes increases due to the disease - possible explanations

are ventricular ectopy or pulsus alternans. For the circa-

dian variation of cvρls
the same penomena can be detected:

Patients with AF do not show circadian variations and the

young healthy group is inbetween the CHF and the elderly

healthy group.

Finally, looking at the correlation of LASDID to stan-

dard HRV parameters and finding no statistical significant

relation for cvρls
demonstrates the independence of our ap-

proach which may be important also for clinical risk strat-

ification.
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