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Abstract 

In this study we aim to develop a decision support 
application for predicting ICU mortality risk that starts 
with a clinical analysis of the problem that also leverages 
machine learning to help create an algorithm with good 
performance characteristics.  By starting from a clear 
basis in clinical practice we hope to improve algorithm 
development and the transparency of the resulting system. 

  We start with a general model structure for a fuzzy 
rule based system (FIS).  The model can be specified by 
clinicians who identify the inputs and the rules.  An 
optimizer based on a genetic algorithm generates the 
coefficients for the final solution.  Using the 2012 
PhysioNet/CinC Challenge data set we constructed a 
Phase 1 system using minimal clinical guidance.  Our 
initial FIS's achieved scores of 0.39 for Event 1 and 94 
for Event 2.  In Phase 2 we updated the FIS based on 
clinician interviews. At the end of Phase 2 we achieved 
0.40 for Event 1 and 60 for Event 2. 

  We hope to show that machine learning techniques 
that are modeled on the clinical understanding of a 
problem can be competitive with more abstract machine 
learning approaches but may be preferable because of 
their explainability and transparency. 

 
1. Introduction 

 A fuzzy rule based system (or fuzzy inference system - 
FIS) can represent complex non-linear models  as clinical 
rules.  In contrast purely data driven techniques like 
neural networks or support vector machines can generate 
solutions that perform well, but are difficult to explain.  
Thus a key advantage of using a FIS is that it can be 
easily understood by clinicians.  This allows clinicians to 
review the rules and provide feedback.  Other regression 
approaches where the system behaves as a black box are 
harder to explain [4].  

In previous work we had developed a FIS for 
identifying aesthetic overdose [1].  By applying the same 
approach to the 2012 PhysioNet Challenge [3] we hope to 
discover whether or not it is competitive with other 
decision support algorithms.  If it performs reasonable 

well we believe the ability to reason about the the FIS 
with clinicians may make it preferable to other methods 
with similar performance. 

 
2. Methods 

2.1. Phase 1 

We first created a Phase 1 FIS with the goals 1) 
Improve over the Challenge sample entry [3] given in the 
PhysioNet Challenge and 2) Compare our technique to a 
simple neural network (NN).  If a simple neural network 
performed far better than a simple FIS we were ready to 
abandon our approach. 

For our initial feature set we took the last value in each 
parameter and narrowed down the number of features 
using a NN based feature perturbation analysis.  Our FIS 
took a naïve single feature per rule approach to 
constructing the rules. 

Is our first pass comparison of the NN and FIS 
approaches we only measured the Event 1 score [3] and 
found that both approaches were comparable and 
performed slightly better than the Challenge example 
entry. 

Our initial FIS entries for Event 1 and Event 2 had 15 
features and 45 rules. 

 
Table 1. Phase I Results. 
 

Event Sample Entry NN Phase 1 
Event 1 Score 0.33  0.42 0.39 
Event 2 Score 68 - 94 

 
2.2. Clinical Analysis 

We began Phase 2 with a literature review focusing on 
work done on the SAPS scoring system.  Motivated by 
work done on the SAPS scoring system [2] we changed 
our initial feature definitions from the latest measurement 
of any parameter to the maximum or minimum of a 
parameter over an interval.  We hoped this approach 
might also be more immune to certain kinds of noise in 
the data. 
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Then we began a series of clinician interviews.  We 
recruited internally within our business and interviewed 
one respiratory therapist, two ICU nurses, and one 
emergency room doctor.  They were given a list of the 
available parameters and asked to prioritize the utility of 
each parameter as both an absolute measure and as a 
trend.  Then we asked a number of qualitative questions 
emphasizing time scales and relationships between the 
parameters.  For example one such interaction that 
emerged during our discussions concerned the assessment 
of oxygenation based on inspired oxygen and O2 
saturation.  This lead to the rule, “If inspired oxygen is 
stable or increasing and O2 saturation is decreasing then 
the likelihood of mortality is high”.  The relationship 
between the two parameters provides more information 
than an assessment that only considers O2 saturation. 

 
2.3. Data and feature extraction 

We created a statistical survey of the Challenge data, 
including minimum, maximum, mean, and sigma of each 
parameter to establish preliminary upper and lower 
boundaries for allowable data.  We cross checked it 
against the references provided by the challenge website 
to establish clinically significant upper and lower bounds.  
We then interviewed one clinician and established a final 
set of clinically significant bounds. 

We noticed a number of other irregularities in the data 
including duplicate entries, other irregular entry timings, 
0 valued entries, and noise.  While we did clean up some 
minor irregularities, in the end due to time constraints we 
did not perform more aggressive artifact rejection.  We 
assumed that derived features that were the minimum or 
maximum of a given time series would be somewhat 
immune to this kind of embedded noise that does is not 
associated with out of range values. 

 
Figure 1. Systolic arterial blood pressure with artifacts. 
 

     Our clinicians also indicated a strong preference for 
trended values, in many cases over intervals as short as 
four hours.  While it was simple to compute trends by 
taking the slope of a linear fit over some interval, we were 
concerned about the impact of noise and by the low data 

rates of some time series.  In the end we only included the 
highest priority trended features as indicated by our 
clinicians, and only used eight hour intervals for time 
series with at least one data point per hour.  We used 
twenty four hour intervals for the other trends. 

 
2.4. FIS optimization 

A FIS has rules and coefficients.  The coefficients are 
used to convert features to fuzzy values that are processed 
by the rules.  A fuzzy value is a category and a weight.  
One set of coefficients might map a heart rate of 90 to the 
fuzzy value “high” with a weight of 0.7.  The optimizer is 
used to select the conversion coefficients that yield good 
results for the given rules. 

 
 

Figure 2.  FIS optimizer structure. 
 
Our FIS optimization system takes as settings:  1) A 

list of features, 2) For each feature the number of fuzzy 
categories to divide it into, 3) The clinically relevant 
maximum and minimum of each feature, 4) The rules, 
and 5) Event 1 and Event 2 scoring functions used to 
score an optimization result. We used the Event 1 scoring 
function to generate a FIS for Event 1 and the Event 2 
scoring function to generate a separate FIS for Event 2. 

The optimizer uses its settings to generate a fixed 
number of FIS’s.  Each FIS starts with random 
coefficients for converting parameters to fuzzy values and 
the same set of rules.  Each FIS is scored and a genetic 
algorithm is used to create a new set of FIS’s that have 
coefficients from set that was evaluated.  The genetic 
algorithm uses each FIS’s score to weight the probability 
that its coefficients will be reused so that the new set 
yields a better result[1].  Figure 2 shows the overall 
structure of the optimizer. 

We then made several runs adding features to try to 
improve performance.  With runs with more than 16 
features it became very difficult to tell if adding features 
improved performance. 

If we ran the optimizer for more generations we did 
see some small improvement in the score.  But this 
resulted in over training the algorithm.  Our Phase 1 
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algorithms had had similar performance for Challenge 
data set A and set B, but our first set of Phase 2 
algorithms performed significantly worse on set B. 

To analyse the over training problem we split the 
Challenge data set A  into a training set with 70% of the 
cases and a validation set with 30% of the cases.  We 
generated solutions using the reduced training set and 
over time plotted the improvement in the algorithm on the 
training set and on the validation set, see Figure 3. 

 
Figure 3. Learning curve for Event 1 scores showing a 

maximum for the validation score at generation 61. 
  
Figure 3 shows the curves for Event 1 with increasing 

performance on the training and validation sets until 
generation 61 then performance increases for the training 
set but it falls on the validation set indicating over 
training.  To address this we added additional features.  
Given that our previous evaluation showed that increasing 
performance with features was difficult, we restricted the 
new features to the parameters identified as most valuable 
by the clinicians.  Our final FIS used 19 features. 

 
Table 2. Final set of features used. 

 
Feature 
Age 
Bilirubin.  Max over 24 hours 
BUN.  Max over 24 hours 
Creatinine.  Max over 24 hours 
Glasgow Coma Score.  Min over 24 hours 
HCO3.  Max over 24 hours 
Heart Rate.  Max over 24 hours 
PaO2.  Min over 24 hours 
PaO2.  Trend over 24 hours. 
pH.  Min over 24 hours 
Platelets.  Min over 24 hours 
Potassium.  Min over 24 hours 
Systolic ABP.  Min over 24 hours 
Systolic ABP.  Trend over 8 hours 
Temp.  Max over 24 hours 

Temp.  Trend over 24 hours 
Urine.  Total over 24 hours 
Urine.  Trend over 8 hours 
White Blood Cell count.  Max over 24 hours 

 

 
 Figure 4. Learning curve for Event 2. 
 
The learning curve for Event 2 shows the performance 

on both the training and validation sets improving and 
leveling off.  To improve this we included the new 
features we added for our Event 1 FIS and we increased 
the size of the initial set of FIS’s used by the genetic 
algorithm. 
 
2.5. Error analysis 

To look for rules that contributed to errors in the 
results we looked at a summary of the rule outputs over 
all of the cases in the validation set.   

Each rule produced a fuzzy output for mortality risk as 
either “very low”, “low”, “medium”, “high” or “very 
high” and an activation weight from 0 to 1.   For each rule 
we captured its output for each case in the validation set.  
The outputs were binned by the Challenge set A outcome, 
by whether or not the patient survived. 

Rules that output “high” or “very high” mortality risk 
more often when the risk was actually low were 
identified.  Likewise for rules that indicated low when the 
risk was really high.  These rules were deleted and the 
resulting rule set was resubmitted to the optimizer for 
further tuning. 

Figure 5 shows the learning curves for the previous 
and the latest Event 1 FIS’s.  Three additional features did 
result in better validation scores.  But adding additional 
features did not always increase the score.  We theorize 
that issues with feature extraction and the number of rules 
and features restricted any additional benefit. 

Figure 6 shows the same comparison as figure 5, but 
for Event 2.  In addition to the updated FIS the size of the 
initial set of FIS’s was doubled.  Increasing the size of the 
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initial set of FIS’s may have yielded a better result but 
may not have addressed issues with the adequacy of the 
FIS model.  Because we combined several feature 
changes in the final FIS runs in order to meet the final 
challenge deadline it is not clear which activities 
impacted the performance the most. 

 

 
Figure 5.  Learning curves for Event 1 before and after 

adding 3 features. 

 
Figure 6.  Learning curves for Event 2 before and after 

adding 3 features and doubling the initial size. 
 
3. Results 

Table 2 shows a comparison of the results of our Phase 
1 and Phase 2 FIS’s on set B, and the final results on set 
C.  While we improved our overall performance between 
Phases 1 and 2, we did not place in the top 10 scores of 
the final ranking. 

 
Table 2. Comparison of Phase 1, Phase 2, and final 
results. 

  
 
  

Event  Phase I  
(set B) 

Phase 2  
(set B) 

Final  
(set C) 

Event 1 0.39 0.40 0.36 
Event 2 94 60 67 

 
4. Discussion 

We felt that the ability to talk about the system with 
clinicians benefitted our development process in ways 
that are hard to quantify.  However, our overall results 
were not especially encouraging.   

One significant limitation was the amount of time it 
took to generate a solution.  A medium size FIS took 8-10 
hours to generate on a 3.2 GHz Xeon CPU.  A few very 
large FIS’s that we tried took up to 30 hours.  Because of 
the statistical nature of the optimization we reran each 
configuration three times.  The delays it took to generate 
and review each solution became a significant hindrance 
to the project.  

It is not clear if the lower then desired final 
performance is due to our approach or due to the 
implementation details or due to not applying sufficient 
time to explore alternatives.  Given more time we would 
have liked to include more features and rules and 
explored variations like including the type of ICU (a 
parameter that was added when Phase 2 started) [3]. 
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