function PCA_classification(X1,X2,DESCRIPTORS,IHD,names1,names2) % X_orig=X; % x1=X(~isnan(X(:,1)) & ~isnan(X(:,2)),1); % x2=X(~isnan(X(:,1)) & ~isnan(X(:,2)),2); % X=[x1 x2]; %n2=length(x1); % DIF_A=X1-X2; % DIF_A(:,strcmp(names1,'PH'))=abs(DIF_A(:,strcmp(names1,'PH'))); DIF_A=X2; X=[X1 DIF_A ]; X=[DESCRIPTORS(:,strcmp(names2,'Age')) X]; ICUTYPE_a=[DESCRIPTORS(:,strcmp(names2,'ICUType'))]; set_name_b='set-b'; [MEAN_DATA_24_B, MEAN_DATA_48_B, DESCRIPTORS_B]= read_data(set_name_b); % DIF_B=MEAN_DATA_24_B-MEAN_DATA_48_B; % DIF_B(:,strcmp(names1,'PH'))=abs(DIF_B(:,strcmp(names1,'PH'))); DIF_B=MEAN_DATA_48_B; Xprobe=[MEAN_DATA_24_B DIF_B]; Xprobe=[DESCRIPTORS_B(:,strcmp(names2,'Age')) Xprobe]; ICUTYPE_b=[DESCRIPTORS_B(:,strcmp(names2,'ICUType'))]; %X_in=X(ICUTYPE_a==1,:); X_in=X; Xprobe_in=zeros(size(X_in))+NaN; %selector_b=selector_b(1:min(end,sum(ICUTYPE_a==1))); %Xprobe_temp=Xprobe(ICUTYPE_b==1,:); Xprobe_temp=Xprobe; Xprobe_in(1:min(size(Xprobe_temp,1),size(X_in,1)),:)=Xprobe_temp(1:min(size(Xprobe_temp,1),size(X_in,1)),:); % scores1=opt_PCA_classification(X_in,IHD(ICUTYPE_a==1),Xprobe_in); % save('scores1_n35.mat','scores1') savefile='icu_1_pca.mat'; scores1=opt_PCA_classification_test(savefile,X_in,IHD,Xprobe_in,ICUTYPE_a,1); X_in=X; Xprobe_in=zeros(size(X_in))+NaN; Xprobe_temp=Xprobe; Xprobe_in(1:min(size(Xprobe_temp,1),size(X_in,1)),:)=Xprobe_temp(1:min(size(Xprobe_temp,1),size(X_in,1)),:); savefile='icu_2_pca.mat'; scores2=opt_PCA_classification_test(savefile,X_in,IHD,Xprobe_in,ICUTYPE_a,2); X_in=X; Xprobe_in=zeros(size(X_in))+NaN; Xprobe_temp=Xprobe; Xprobe_in(1:min(size(Xprobe_temp,1),size(X_in,1)),:)=Xprobe_temp(1:min(size(Xprobe_temp,1),size(X_in,1)),:); savefile='icu_3_pca.mat'; scores3=opt_PCA_classification_test(savefile,X_in,IHD,Xprobe_in,ICUTYPE_a,3); X_in=X; Xprobe_in=zeros(size(X_in))+NaN; Xprobe_temp=Xprobe; Xprobe_in(1:min(size(Xprobe_temp,1),size(X_in,1)),:)=Xprobe_temp(1:min(size(Xprobe_temp,1),size(X_in,1)),:); savefile='icu_4_pca.mat'; scores4=opt_PCA_classification_test(savefile,X_in,IHD,Xprobe_in,ICUTYPE_a,4); scores1 scores2 scores3 scores4 main_run pause() return %savefile='icu_all.mat'; %scores1=opt_PCA_classification_test(savefile,X_in,IHD(ICUTYPE_a==1),Xprobe_in); %N2=45 X_in=X(ICUTYPE_a==2,:); Xprobe_in=zeros(size(X_in))+NaN; %selector_b=selector_b(1:min(end,sum(ICUTYPE_a==1))); Xprobe_temp=Xprobe(ICUTYPE_b==2,:); Xprobe_in(1:min(size(Xprobe_temp,1),size(X_in,1)),:)=Xprobe_temp(1:min(size(Xprobe_temp,1),size(X_in,1)),:); % scores2=opt_PCA_classification(X_in,IHD(ICUTYPE_a==2),Xprobe_in); % save('scores2_n35.mat','scores2') savefile='icu2.mat'; scores2=opt_PCA_classification_test(savefile,X_in,IHD(ICUTYPE_a==2),Xprobe_in); X_in=X(ICUTYPE_a==3,:); Xprobe_in=zeros(size(X_in))+NaN; %selector_b=selector_b(1:min(end,sum(ICUTYPE_a==1))); Xprobe_temp=Xprobe(ICUTYPE_b==3,:); Xprobe_in(1:min(size(Xprobe_temp,1),size(X_in,1)),:)=Xprobe_temp(1:min(size(Xprobe_temp,1),size(X_in,1)),:); % scores3=opt_PCA_classification(X_in,IHD(ICUTYPE_a==3),Xprobe_in); % save('scores3_n35.mat','scores3') savefile='icu3.mat'; scores3=opt_PCA_classification_test(savefile,X_in,IHD(ICUTYPE_a==3),Xprobe_in); X_in=X(ICUTYPE_a==4,:); Xprobe_in=zeros(size(X_in))+NaN; %selector_b=selector_b(1:min(end,sum(ICUTYPE_a==1))); Xprobe_temp=Xprobe(ICUTYPE_b==4,:); Xprobe_in(1:min(size(Xprobe_temp,1),size(X_in,1)),:)=Xprobe_temp(1:min(size(Xprobe_temp,1),size(X_in,1)),:); % scores4=opt_PCA_classification(X_in,IHD(ICUTYPE_a==4),Xprobe_in); % save('scores4_n35.mat','scores4') savefile='icu4.mat'; scores4=opt_PCA_classification_test(savefile,X_in,IHD(ICUTYPE_a==4),Xprobe_in); scores1 scores2 scores3 scores4 % lam=35:5:60; % % figure() % plot(lam,scores1) % figure() % plot(lam,scores2) % figure() % plot(lam,scores3) % figure() % plot(lam,scores4) % [pc1,score1,latent1,tsquare1] = princomp(zscore(X)); % opts = struct( 'maxiters', 1000,... % 'algorithm', 'vb',... % 'xprobe', Xprobe,... % 'uniquesv', 0,... % 'cfstop', [ 100 0 0 ],... % 'minangle', 0 ); function best_lam_score=opt_PCA_classification(DATA,IHD_in,probe) probe=probe'; opts = struct( 'maxiters', 2000,... 'xprobe', probe,... 'uniquesv', 0,... 'autosave',10000000,... 'cfstop', [ 100 0 0 ],... 'minangle', 0 ); n2=size(DATA,1); best_lam=0; max_score1_lam=0; max_score2_lam=0; best_lam_score=[]; lam=0.01:0.002:.03; lam=[10 20:5:35]; X_orig=DATA; for lam_idx=1:length(lam) % Y=(IHD-1)+IHD; % classes y ={-1,1} % X=X_Test; % R=~isnan(X); % PHAT=teach_log_reg(X,Y,R,lam(lam_idx)); N=35; [ A, S, Mu, V, CV, HP, LC ] = pca_full( X_orig', N,opts ); X_rec =( repmat(Mu,1,n2) + A*S)'; % %[ A, S, Mu, LC ] = pcaimput( X_orig', N ) ; % scatter(X(:,1),X(:,2),'or') % hold on % scatter(Xrec(:,1),Xrec(:,2),'xg') [pc1,score1,latent1,tsquare1] = princomp(zscore(X_rec)); X_rec=score1(:,1:end); N2=sum(cumsum(latent1)<0.999*sum(latent1)); N2=min(N2,lam(lam_idx)); X_rec=X_rec(:,1:N2);% %X=X(:,1:N); % size(X_rec) % size(IHD_in) train=1:round(n2/2); valid=round(n2/2):n2; B2 = mnrfit(X_rec(train,:),IHD_in(train)+1); % size(B2) %% if size(B2,1)== size(X_rec,2)+1 && size(B2,2)==1 PHAT = mnrval(B2,X_rec(valid,:)); % else % best_lam_score(lam_idx)=-1; % continue; % end DATA=zeros(length(valid),3); IHD_valid=IHD_in(valid); max_score1=0; max_score2=0; best_th=0; for class_th=.1:.01:0.5 % DATA(:,1)=str2double('0000'); DATA(:,2)=PHAT(:,2); %DATA(isnan(PHAT(:,2)),2)=PHAT_saps(:,2); DATA(:,3)=PHAT(:,2)> class_th; % DATA(isnan(PHAT(:,2)),3)=PHAT_saps(:,2)> 0.33; % % % DATA(:,2)=PHAT(:,2); % % % DATA(isnan(PHAT(:,2)),2)=PHAT_saps(:,2); % % % DATA(~isnan(PHAT(:,2)),3)=PHAT(~isnan(PHAT(:,2)),2)> class_th; % % % DATA(isnan(PHAT(:,2)),3)=PHAT_saps(:,2)> 0.33; DATA(DATA(:,2)<0.01,2)=0.01; DATA(DATA(:,2)>0.99,2)=0.99; %DATA(:,3)=PHAT1(:,2)>0.17 & PHAT2(:,2)>class_th ; % if max_score1==0 % savefile = 'DATA_learn.mat'; % save(savefile, 'DATA') % % end % if(~isempty(results)) % Calculate sensitivity (Se) and positive predictivity (PPV) TP=sum(DATA(IHD_valid==1,3)); FN=sum(~DATA(IHD_valid==1,3)); FP=sum(DATA(IHD_valid==0,3)); Se=TP/(TP+FN); PPV=TP/(TP+FP); show=0; % if show is 1, the decile graph will be displayed by lemeshow() % H=lemeshow([IHD DATA(:,2)],show); % Use the title of figure to display the results % title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ]) % The event 1 score is the smaller of Se and PPV. score1 = min(Se, PPV); if score1>max_score1 max_score1=score1; best_th=class_th; % max_score2=H; % display(['Unofficial Event 1 score: ' num2str(score1)]); end % The event 2 score is the Hosmer-Lemeshow statistic (H). %display(['Unofficial Event 2 score: ' num2str(H)]); % figure(10) % hold on % scatter(class_th,score1,'x') % end end best_lam_score(lam_idx)=max_score1; if max_score1 > max_score1_lam best_lam=0; max_score1_lam=max_score1; max_score2_lam=max_score2; end end end %% test function function best_lam_score=opt_PCA_classification_test(str,DATA,IHD_in,probe,ICUTYPE_a,ICU) probe=probe'; opts = struct( 'maxiters', 5000,... 'xprobe', probe,... 'uniquesv', 0,... 'cfstop', [ 100 0 0 ],... 'minangle', 0 ); n2=size(DATA,1); best_lam=0; max_score1_lam=0; max_score2_lam=0; best_lam_score=[]; lam=35; lam_idx=1; X_orig=DATA; N2_min=30; % 'best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B') % for lam_idx=1:length(lam) % Y=(IHD-1)+IHD; % classes y ={-1,1} % X=X_Test; % R=~isnan(X); % PHAT=teach_log_reg(X,Y,R,lam(lam_idx)); N=lam(1); [ A, S, Mu, V, CV, HP, LC ] = pca_full( X_orig', N,opts ); X_in =( repmat(Mu,1,n2) + A*S)'; X_new=X_orig(1,:)'; S_new=calc_S_new_data(X_new,A,V,Mu,N,CV); X_new_rec =( repmat(Mu,1,1) + A*S_new)'; % % % % % % plot(X_new_rec,'r');hold on;plot(X_orig(20,:)') % %[ A, S, Mu, LC ] = pcaimput( X_orig', N ) ; % scatter(X(:,1),X(:,2),'or') % hold on % scatter(Xrec(:,1),Xrec(:,2),'xg') [Z,mu,sigma] = zscore(X_in); % % % % % % % % dim = find(size(X_in) ~= 1, 1); % % % % % direc sigma0 = sigma; sigma0(sigma0==0) = 1; z = bsxfun(@minus,X_new_rec', mu'); z = bsxfun(@rdivide, z, sigma0'); %-- [pc1,score1,latent1,tsquare1] = princomp(Z); X_in=score1(:,1:end); N2=sum(cumsum(latent1)<0.999*sum(latent1)); N2=min(N2,N2_min); x_in=pinv(pc1)*z(:,1); % plot(pinv(pc1)*z(:,1),'r');hold on; plot(X_in(20,:)) X_in=X_in(:,1:N2);% X=X(:,1:N); X_in=X_in(ICUTYPE_a==ICU,:); IHD_in=IHD_in(ICUTYPE_a==ICU); B = mnrfit(X_in,IHD_in+1); PHAT = mnrval(B,X_in); % PHAT_ = mnrval(B,x_in); DATA=zeros(size(X_in,1),3); max_score1=0; max_score2=0; best_th=0; for class_th=.1:.01:0.5 % DATA(:,1)=str2double('0000'); DATA(:,2)=PHAT(:,2); %DATA(isnan(PHAT(:,2)),2)=PHAT_saps(:,2); DATA(:,3)=PHAT(:,2)> class_th; % DATA(isnan(PHAT(:,2)),3)=PHAT_saps(:,2)> 0.33; % % % DATA(:,2)=PHAT(:,2); % % % DATA(isnan(PHAT(:,2)),2)=PHAT_saps(:,2); % % % DATA(~isnan(PHAT(:,2)),3)=PHAT(~isnan(PHAT(:,2)),2)> class_th; % % % DATA(isnan(PHAT(:,2)),3)=PHAT_saps(:,2)> 0.33; DATA(DATA(:,2)<0.01,2)=0.01; DATA(DATA(:,2)>0.99,2)=0.99; %DATA(:,3)=PHAT1(:,2)>0.17 & PHAT2(:,2)>class_th ; % if max_score1==0 % savefile = 'DATA_learn.mat'; % save(savefile, 'DATA') % % end % if(~isempty(results)) % Calculate sensitivity (Se) and positive predictivity (PPV) TP=sum(DATA(IHD_in==1,3)); FN=sum(~DATA(IHD_in==1,3)); FP=sum(DATA(IHD_in==0,3)); Se=TP/(TP+FN); PPV=TP/(TP+FP); show=0; % if show is 1, the decile graph will be displayed by lemeshow() % H=lemeshow([IHD DATA(:,2)],show); % Use the title of figure to display the results % title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ]) % The event 1 score is the smaller of Se and PPV. score1 = min(Se, PPV); if score1>max_score1 max_score1=score1; best_th=class_th; % max_score2=H; % display(['Unofficial Event 1 score: ' num2str(score1)]); end % The event 2 score is the Hosmer-Lemeshow statistic (H). %display(['Unofficial Event 2 score: ' num2str(H)]); % figure(10) % hold on % scatter(class_th,score1,'x') % end end best_lam_score(lam_idx)=max_score1; if max_score1 > max_score1_lam best_lam=0; max_score1_lam=max_score1; max_score2_lam=max_score2; end %end PHAT_all=PHAT; save(str,'N2','PHAT_all','best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B') end end