function main_run % MATLAB script for processing a Challenge 2012 data set with a Challenge entry % Version 2.0 (22 March 2012) % % A script similar to this one will be used as part of the evaluation of % Challenge entries written in m-code. A companion script will be used to % perform the same function for Challenge entries written in C and other % languages. We have provided these scripts so that Challenge participants % can test their entries to verify that they run properly in the environment % that will be used to test them. % % Each Challenge .txt file (record) contains data for one patient, in 3 columns % (timestamp, parameter, and value). The three Challenge data sets contain % 4000 records each. % % This script supplies a complete set of 4000 records, one at a time, to an % entry, and collects its output for each record (a binary prediction of % survival, for event 1, and an estimate of mortality risk, for event 2) % in a summary output file. % % The summary output file is then scored by comparing its contents with the % patients' known outcomes. This script includes MATLAB code that can % calculate unofficial scores for the training data (set A), for which the % known outcomes are provided to participants. Entries will be ranked using % official scores obtained using the same methods, but based on testing with % sets B and C, for which the outcomes are not provided to participants. % % If your entry is written in m-code, it must be in the form of a function % named physionet2012, with this signature: % [risk,survival]=physionet2012(tm,category,val); % See the sample entry at http://physionet.org/challenge/2012/physionet2012.m % for descriptions of the input and output variables. % % To use this script to obtain an unofficial score for your entry on set A: % 1. Download these files from http://physionet.org/challenge/2012/ and save % them in your MATLAB working directory: % genresults.m (this file) % lemeshow.m (function needed to calculate Event 2 score) % set-a.zip or set-a.tar.gz (zip archive or tarball of set A files) % Outcomes-a.txt (known outcomes for set A) % 2. Unzip set-a.zip (or unpack set-a.tar.gz), creating a subdirectory within % your working directory called 'set-a'. When you have completed this % step, the set-a directory should contain 4000 individual .txt files. % 3. Save a copy of your entry (physionet2012.m) in your working directory. % 4. The next few lines are MATLAB code that clears any previously set % variables, and sets the name of the directory containing the input % data, the name for the summary output file, and the name of the file % containing the known outcomes. Change them if necessary. clear all;close all;clc set_name='set-a'; fname_out='Outputs-a.txt'; results='Outcomes-a.txt'; % 5. Start MATLAB and type % Main_Challenge % The fname_out file will be generated in the % current directory. % % You can also use this script to run your entry on test set B, but it will % not be able to calculate scores in this case, since the outcomes are provided % for set A only. To do this, download and unzip/unpack set B into a 'set-b' % subdirectory as you did for set A, and uncomment the next three lines: % % set_name='set-b'; % fname_out='Outputs-b.txt' % results=[]; % % Note that if you run a test on either set A or B more than once, you should % delete (or rename) your summary output file (named in fname_out), since this % code appends new outputs to any existing output file rather than starting % over. cur_dir=pwd; fdel='/'; if(ispc) fdel='\'; end data_dir=[cur_dir fdel set_name fdel]; cd(data_dir) records=dir('*.txt'); cd(cur_dir) I=length(records); DATA=zeros(I,3) + NaN; display(['Processing records ...']) [ALL_CATEGORIES,time_series_names,descriptors]=get_param_names(); num_params=length(ALL_CATEGORIES); num_ts_params=length(time_series_names); num_descriptors=length(descriptors); % MEAN_DATA_24=zeros(I,num_params) + NaN; % MEAN_DATA_48=zeros(I,num_params) + NaN; num_data=zeros(num_params,1)+NaN; % Open fname_out and append to any previous contents fid_out=fopen(fname_out,'a'); % Each Challenge .txt file (record) contains data for one patient, in 3 columns % (timestamp, parameter, and value). During each iteration of the loop below, % the contents of a single record are loaded into arrays named tm, % category, and val. Each data set (A, B, and C) contains 4000 records. header={'tm','category','val'}; % savefile='gender0_60.mat'; % load(savefile,'N2','best_th','A','Mu','V', 'CV','N','mu','sigma'); % N2_0=N2; % best_th_0=best_th; % A_0=A; % Mu_0=Mu; % V_0=V; % CV_0=CV; % N_0=N; % mu_0=mu; % sigma_0=sigma; % % savefile='gender1_60.mat'; % load(savefile,'N2','best_th','A','Mu','V', 'CV','N','mu','sigma'); for i=1:I record_id=records(i).name(1:end-4); fname=[data_dir record_id '.txt']; fid_in=fopen(fname,'r'); C=textscan(fid_in,'%q %q %f','delimiter', ',','HeaderLines',1); fclose(fid_in); for n=1:length(header) eval([header{n} '=C{:,n};']) end % [times,values,names]=extract_param_series(tm,category,val); % % %plot_params(times,values,names); % % means24=calculate_mean(times,values,names,ALL_CATEGORIES,[0 24*60]); % means48=calculate_mean(times,values,names,ALL_CATEGORIES,[24*60 48*60]); % MEAN_DATA_24(i,:)=means24; % MEAN_DATA_48(i,:)=means48; % The contents of one .txt input file are now ready to be given to your % physionet2012 function for analysis in the next line: i [risk,survival]=physionet2012(tm,category,val); %[risk,survival]=physionet2012_3(tm,category,val); % [times,values,names]=extract_param_series(tm,category,val); % % [ts_times,ts_values,ts_names]=get_param_subset(time_series_names,times,values,names); % % [des_times,des_values,des_names]=get_param_subset(descriptors,times,values,names); % % DESCRIPTORS(i,:)=cell2mat(des_values(:))'; % % i % Gender_a=DESCRIPTORS(:,strcmp(des_names,'Gender')); % if Gender_a==0 % [risk,survival]=physionet2012_4(tm,category,val,N2_0,best_th_0,A_0,Mu_0,V_0, CV_0,N_0,mu_0,sigma_0); % else % % [risk,survival]=physionet2012_4(tm,category,val,N2,best_th,A,Mu,V, CV,N,mu,sigma); % end % The outputs of the analysis are now available in the risk (event 2) % and survival (event 1) variables output by the function. DATA(i,1)=str2double(record_id); DATA(i,2)=risk; DATA(i,3)=survival; if(~mod(i,500)) display(['Processed: ' num2str(i) ' records out of ' num2str(I)]) end % Format the output in 3 columns (RecordID, survival, risk). del_ind=strfind(fname,fdel); if(isempty(del_ind)) del_ind=0; end count=fprintf(fid_out,'%s,%u,%f\n',fname(del_ind(end)+1:end-4),survival,risk); if(~count) warning(['**No data written to output file:' fname_out ' from input file: ' fname]) end end fclose(fid_out); display(['*** All records processed']) % If the known outcomes are available, the code below calculates unoffical % event 1 and event 2 scores. Scores based on set A are not used to rank % entries, since all participants have been given the correct answers! if(~isempty(results)) % The file of known outcomes contains six columns. The Challenge goal is % to predict the sixth column, IHD (in-hospital death). variables={'record_id_res','SAPS','SOFA','LOS','Survival','IHD'}; fid_result=fopen(results,'r'); C=textscan(fid_result,'%f %f %f %f %f %f','delimiter', ',','HeaderLines',1); fclose(fid_result); for n=1:length(variables) eval([variables{n} '=C{:,n};']) end % Calculate sensitivity (Se) and positive predictivity (PPV) TP=sum(DATA(IHD==1,3)); FN=sum(~DATA(IHD==1,3)); FP=sum(DATA(IHD==0,3)); Se=TP/(TP+FN); PPV=TP/(TP+FP); show=1; % if show is 1, the decile graph will be displayed by lemeshow() H=lemeshow([IHD DATA(:,2)],show); % Use the title of figure to display the results title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV)]) % The event 1 score is the smaller of Se and PPV. score1 = min(Se, PPV); display(['Unofficial Event 1 score: ' num2str(score1)]); % The event 2 score is the Hosmer-Lemeshow statistic (H). display(['Unofficial Event 2 score: ' num2str(H)]); end % plots parameter histograms in each group %plot_means(MEAN_DATA_24,DATA,IHD,ALL_CATEGORIES); end