function [risk,prediction]=physionet2012_4(time,param,value,N2,best_th,A,Mu,V, CV,N,mu,sigma) I=1; i=1; [ALL_CATEGORIES,time_series_names,descriptors]=get_param_names(); num_params=length(ALL_CATEGORIES); num_ts_params=length(time_series_names); num_descriptors=length(descriptors); MEAN_DATA_24=zeros(I,num_ts_params) + NaN; MEAN_DATA_48=zeros(I,num_ts_params) + NaN; DESCRIPTORS=zeros(I,num_descriptors) + NaN; [times,values,names]=extract_param_series(time,param,value); [ts_times,ts_values,ts_names]=get_param_subset(time_series_names,times,values,names); [des_times,des_values,des_names]=get_param_subset(descriptors,times,values,names); DESCRIPTORS(i,:)=cell2mat(des_values(:))'; means24=calculate_mean(ts_times,ts_values,ts_names,time_series_names,[0 24*60]); means48=calculate_mean(ts_times,ts_values,ts_names,time_series_names,[24*60 48*60]); MEAN_DATA_24(i,:)=means24; MEAN_DATA_48(i,:)=means48; [cont_times,cont_values,cont_names,d,dd,md_max,cont_values2,vari]=resample_params(time_series_names,ts_times,ts_values,ts_names,des_values,des_names); MD_DATA_D(i,1:length(d))=d'; MD_DATA_DD(i,1:length(d))=dd'; MD_VARI(i,:)=vari'; MD_DATA(i)=md_max; DYN_DATA(:,:,i)=cont_values; R=~isnan(MEAN_DATA_24); %SAPS_SCORES(i)=saps_score(time,param,value,1,[0 24]); %SAPS_SCORES_48(i)=saps_score(time,param,value,1,[24 48]); [risk,prediction]=lin_reg_classify(time_series_names,MD_DATA_D,MD_DATA_DD,MD_DATA,DESCRIPTORS,des_names,R,MD_VARI,MEAN_DATA_24,MEAN_DATA_48,N2,best_th,A,Mu,V, CV,N,mu,sigma); % [PHAT,TH]=PCA_classify(MEAN_DATA_24,MEAN_DATA_48,DESCRIPTORS,time_series_names,des_names); % if isnan(PHAT(:,2)) % X_trunc_saps=[SAPS_SCORES-SAPS_SCORES_48 SAPS_SCORES ]; % PHAT_saps = mnrval(B_saps,X_trunc_saps); % end % if isnan(PHAT(2)) % % [risk,prediction]=physionet2012_SAPS(time,param,value); % risk=0.5; % prediction=risk>TH; % elseif PHAT(2)<0.01 % risk=0.01; % prediction=risk>TH; % elseif PHAT(2)>0.99 % risk=0.99; % prediction=risk>TH; % else % risk=PHAT(2); % prediction=risk>TH; % end function [risk,prediction]=lin_reg_classify(time_series_names,MD_DATA_D,MD_DATA_DD,MD_DATA,DESCRIPTORS,des_names,R,MD_VARI,MEAN_DATA_24,MEAN_DATA_48,N2,best_th,A,Mu,V, CV,N,mu,sigma) X=[MEAN_DATA_24 MEAN_DATA_48 ]; %X=[X1]; %X=[X]; AGE_a=DESCRIPTORS(:,strcmp(des_names,'Age')); Gender_a=DESCRIPTORS(:,strcmp(des_names,'Gender')); ICUTYPE_a=[DESCRIPTORS(:,strcmp(des_names,'ICUType'))]; ICUTYPE_t=ICUTYPE_a; ICUTYPE_a(ICUTYPE_t==1)=2; ICUTYPE_a(ICUTYPE_t==2)=4; ICUTYPE_a(ICUTYPE_t==3)=1; ICUTYPE_a(ICUTYPE_t==4)=3; X=[AGE_a ICUTYPE_a X]; if Gender_a==0 %if des{:,strcmp(des_names,'Gender')}==0 %X_new_rec=zeros(size(X)); % savefile='gender0.mat'; savefile='gender0_60.mat'; % savefile='gender0_60_ppca'; % load(savefile,'N2','PHAT_all','best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B'); % load(savefile,'N2','best_th','A','Mu','V', 'CV','N','mu','sigma'); %save('gender0_60_karsittu.mat','N2','best_th','A','Mu','V', 'CV','N','mu','sigma') % S_new=calc_S_new_data(X',A,V,Mu,N,CV); % X_new_rec =( repmat(Mu,1,size(S,2)) + (A*S))'; S_new=calc_S_new_data(X',A,V,Mu,N,CV); X_new_rec =( repmat(Mu,1,1) + A*S_new)'; sigma0 = sigma; sigma0(sigma0==0) = 1; z = bsxfun(@minus,X_new_rec', mu'); z = bsxfun(@rdivide, z, sigma0'); z(isnan(z))=0; % x_in=(pinv(pc1)*z)'; % X(Gender_a==0,:)=x_in(Gender_a==0,:); z=z'; X(Gender_a==0,:)=z(Gender_a==0,:); elseif Gender_a==1 || Gender_a==-1 % savefile='gender1.mat'; savefile='gender1_60.mat'; % savefile='gender1_60_ppca'; %load(savefile,'N2','PHAT_all','best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B'); % load(savefile,'N2','best_th','A','Mu','V', 'CV','N','mu','sigma'); %save('gender1_60_karsittu.mat','N2','best_th','A','Mu','V', 'CV','N','mu','sigma') % S_new=calc_S_new_data(X(Gender_a==1,:),A,V,Mu,N,CV); % X_new_rec =( repmat(Mu,1,size(S,2)) + A*S)'; S_new=calc_S_new_data(X',A,V,Mu,N,CV); X_new_rec =( repmat(Mu,1,1) + A*S_new)'; sigma0 = sigma; sigma0(sigma0==0) = 1; z = bsxfun(@minus,X_new_rec', mu'); z = bsxfun(@rdivide, z, sigma0'); % x_in=(pinv(pc1)*z)'; % X(Gender_a==1,:)=x_in(Gender_a==1,:); z=z'; z(isnan(z))=0; X(Gender_a==1,:)=z(Gender_a==1,:); X(Gender_a==-1,:)=z(Gender_a==-1,:); end %X=[ MD_DATA_D MD_DATA_DD MD_DATA double(R) zscore(MD_VARI) X]; X=[Gender_a double(R) MD_VARI X]; load('w1.mat','w1') load('w2.mat','w2') [ResTrain,labelsEstimTrain,probsTrain,P] = predict_LRoma(w1,X,1); [ResTrain,labelsEstimTrain,probsTrain,P2] = predict_LRoma(w1,X,1); PHAT = P'; PHAT2 = P2'; class_th=0.32; % IHD_=IHD; % max_score1=0; % max_score2=100000; % best_th=0; % best_th2=0; % for class_th=.1:.01:0.5 DATA(:,1)=str2double('0000'); DATA(:,2)=PHAT2(:,1); DATA(:,3)=PHAT(:,1)> class_th; DATA(DATA(:,2)<0.01,2)=0.01; DATA(DATA(:,2)>0.99,2)=0.99; risk=DATA(:,2); prediction=DATA(:,3); % if(~isempty(results)) % % Calculate sensitivity (Se) and positive predictivity (PPV) % TP=sum(DATA(IHD_==1,3)); % FN=sum(~DATA(IHD_==1,3)); % FP=sum(DATA(IHD_==0,3)); % Se=TP/(TP+FN); % PPV=TP/(TP+FP); % % show=0; % if show is 1, the decile graph will be displayed by lemeshow() % H=lemeshow([IHD_ DATA(:,2)],show); % % Use the title of figure to display the results % title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ]) % The event 1 score is the smaller of Se and PPV. % score1 = min(Se, PPV); % if score1>max_score1 % max_score1=score1; % best_th=class_th; % % max_score2=H; % BEST_DATA=DATA; % % display(['Unofficial Event 1 score: ' num2str(score1)]); % end % % if H