function DATA=PCA_imput_classificator(IHD,time_series_names,MEAN_DATA_24,MEAN_DATA_48,DESCRIPTORS,des_names) X=[MEAN_DATA_24 MEAN_DATA_48 ]; %X=[X1]; %X=[X]; AGE_a=DESCRIPTORS(:,strcmp(des_names,'Age')); Gender_a=DESCRIPTORS(:,strcmp(des_names,'Gender')); ICUTYPE_a=[DESCRIPTORS(:,strcmp(des_names,'ICUType'))]; ICUTYPE_t=ICUTYPE_a; ICUTYPE_a(ICUTYPE_t==1)=2; ICUTYPE_a(ICUTYPE_t==2)=4; ICUTYPE_a(ICUTYPE_t==3)=1; ICUTYPE_a(ICUTYPE_t==4)=3; X=[AGE_a ICUTYPE_a X]; %if des{:,strcmp(des_names,'Gender')}==0 %X_new_rec=zeros(size(X)); savefile='gender0.mat'; savefile='gender0_60.mat'; load(savefile,'N2','PHAT_all','best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B'); % S_new=calc_S_new_data(X',A,V,Mu,N,CV); X_new_rec =( repmat(Mu,1,size(S,2)) + (A*S))'; % mu1=Mu; sigma0 = sigma; sigma0(sigma0==0) = 1; z = bsxfun(@minus,X_new_rec', mu'); z = bsxfun(@rdivide, z, sigma0'); x_in=(pinv(pc1)*z)'; X(Gender_a==0,:)=x_in(Gender_a==0,:); % X(Gender_a==0,:)=x_in; N1=N2; X_reconstructed=zeros(size(X)); X_reconstructed(Gender_a==0,:)=X_new_rec(Gender_a==0,:); % X_reconstructed(Gender_a==0,:)=X_new_rec; % x_in=x_in(1:N2); %elseif des{:,strcmp(des_names,'Gender')}==1 savefile='gender1.mat'; savefile='gender1_60.mat'; load(savefile,'N2','PHAT_all','best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B'); % mu2=Mu; % plot(mu1) % hold on % plot(mu2) % S_new=calc_S_new_data(X(Gender_a==1,:),A,V,Mu,N,CV); X_new_rec =( repmat(Mu,1,size(S,2)) + A*S)'; sigma0 = sigma; sigma0(sigma0==0) = 1; z = bsxfun(@minus,X_new_rec', mu'); z = bsxfun(@rdivide, z, sigma0'); x_in=(pinv(pc1)*z)'; X(Gender_a==1,:)=x_in(Gender_a==1,:); % X(Gender_a==1,:)=x_in; X_reconstructed(Gender_a==1,:)=X_new_rec(Gender_a==1,:); %X_reconstructed(Gender_a==1,:)=X_new_rec; best1=[0 0]; best2=[0 0]; %for th=0.15:0.01:0.35 th= 0.2800 ; data1=X_reconstructed(Gender_a==0,3:39); data2=X_reconstructed(Gender_a==0,40:76); S0=analyze_params(data1,data2,IHD(Gender_a==0),time_series_names,th); X_classify=zeros(size(data1,1),[]); add_idx=1; for param_idx=1:size(S0,1) if S0(param_idx,1)==1 X_classify(:,add_idx)=data1(:,param_idx); add_idx=add_idx+1; elseif S0(param_idx,2)==1 X_classify(:,add_idx)=data2(:,param_idx); add_idx=add_idx+1; elseif S0(param_idx,3)==1 X_classify(:,add_idx:add_idx+1)=[data1(:,param_idx) data2(:,param_idx)]; add_idx=add_idx+2; elseif S0(param_idx,4)==1 X_classify(:,add_idx:add_idx+1)=[data1(:,param_idx) abs(data2(:,param_idx))]; add_idx=add_idx+2; elseif S0(param_idx,5)==1 X_classify(:,add_idx)=(data1(:,param_idx)+data2(:,param_idx))./2; add_idx=add_idx+1; else % pad parameter end end % % for param_idx=1:size(S0,1) % % if max(S0(param_idx,:))==1 % X_classify(:,add_idx:add_idx+1)=[data1(:,param_idx) data2(:,param_idx)]; % add_idx=add_idx+2; % else % % pad parameter % end % end % X_classify=[AGE_a(Gender_a==0) ICUTYPE_a(Gender_a==0) X_classify]; % [best_th1,max_score_0,D0] = opt_th_valid(X_classify,IHD(Gender_a==0)); % if max_score_0 > best1(2) % best1=[best_th1,max_score_0]; % end [best_th0,max_score_0,D0] = opt_th(X_classify,IHD(Gender_a==0)); % % data1=X_reconstructed(Gender_a==1,3:39); data2=X_reconstructed(Gender_a==1,40:76); th= 0.3200; S1=analyze_params(data1,data2,IHD(Gender_a==1),time_series_names,th); X_classify=zeros(size(data1,1),[]); add_idx=1; for param_idx=1:size(S1,1) if S1(param_idx,1)==1 X_classify(:,add_idx)=data1(:,param_idx); add_idx=add_idx+1; elseif S1(param_idx,2)==1 X_classify(:,add_idx)=data2(:,param_idx); add_idx=add_idx+1; elseif S1(param_idx,3)==1 X_classify(:,add_idx:add_idx+1)=[data1(:,param_idx) data2(:,param_idx)]; add_idx=add_idx+2; elseif S1(param_idx,4)==1 X_classify(:,add_idx:add_idx+1)=[data1(:,param_idx) abs(data2(:,param_idx))]; add_idx=add_idx+2; elseif S1(param_idx,5)==1 X_classify(:,add_idx)=(data1(:,param_idx)+data2(:,param_idx))./2; add_idx=add_idx+1; else % pad parameter end end % for param_idx=1:size(S1,1) % % if max(S1(param_idx,:))==1 % X_classify(:,add_idx:add_idx+1)=[data1(:,param_idx) data2(:,param_idx)]; % add_idx=add_idx+2; % else % % pad parameter % end % end % X_classify=[AGE_a(Gender_a==1) ICUTYPE_a(Gender_a==1) X_classify]; % [best_th1,max_score_1,D0] = opt_th_valid(X_classify,IHD(Gender_a==1)); % if max_score_1 > best2(2) % best2=[best_th1,max_score_1]; % end %end pause(.1) [best_th1,max_score_1,D1] = opt_th(X_classify,IHD(Gender_a==1)); % % % data1=X_reconstructed(:,3:39); % data2=X_reconstructed(:,40:76); % S=analyze_params(data1,data2,IHD,time_series_names); % X_classify=zeros(4000,[]); % add_idx=1; % % for param_idx=1:size(S,1) % % if S(param_idx,1)==1 % X_classify(:,add_idx)=data1(:,param_idx); % add_idx=add_idx+1; % elseif S(param_idx,2)==1 % X_classify(:,add_idx)=data2(:,param_idx); % add_idx=add_idx+1; % elseif S(param_idx,3)==1 % X_classify(:,add_idx:add_idx+1)=[data1(:,param_idx) data2(:,param_idx)]; % add_idx=add_idx+2; % elseif S(param_idx,4)==1 % X_classify(:,add_idx:add_idx+1)=[data1(:,param_idx) abs(data2(:,param_idx))]; % add_idx=add_idx+2; % elseif S(param_idx,5)==1 % X_classify(:,add_idx)=(data1(:,param_idx)+data2(:,param_idx))./2; % add_idx=add_idx+1; % else % % pad parameter % end % end % % for param_idx=1:size(S,1) % % if max(S(param_idx,:))==1 % X_classify(:,add_idx:add_idx+1)=[data1(:,param_idx) data2(:,param_idx)]; % add_idx=add_idx+2; % else % % pad parameter % end % end % % X_classify=[AGE_a ICUTYPE_a X_classify]; % % plot(data1(100,:),'r');hold on;plot(data2(100,:),'g') % [best_th1,max_score_1,D0] = opt_th(X_classify(Gender_a==0,:),IHD(Gender_a==0)); % [best_th2,max_score_2,D1] = opt_th(X_classify(Gender_a==1,:),IHD(Gender_a==1)); % % DATA(:,1)=0; % DATA(Gender_a==0,2)=D0(:,2); % DATA(Gender_a==1,2)=D1(:,2); % DATA(Gender_a==0,3)=D0(:,3); % DATA(Gender_a==1,3)=D1(:,3); % return % % [best_th0,max_score_0,D] = opt_th(X_classify,IHD); % % pause(.1) % % %0.2708 %X=[R(:,~strcmp(time_series_names,'MechVent'))]; %0.277 % X=[R(:,strcmp(time_series_names,'TroponinT'))]; % X=[R(:,strcmp(time_series_names,'TroponinI')) X]; % X=[R(:,strcmp(time_series_names,'RespRate')) X]; % X=[R(:,strcmp(time_series_names,'Mg')) X]; % X=[R(:,strcmp(time_series_names,'Lactate')) X]; % X=[R(:,strcmp(time_series_names,'K')) X]; % X=[R(:,strcmp(time_series_names,'FiO2')) X]; % X=[R(:,strcmp(time_series_names,'Bilirubin')) X]; % X=[R(:,strcmp(time_series_names,'AST')) X]; % X=[R(:,strcmp(time_series_names,'ALT')) X]; % X=[R(:,strcmp(time_series_names,'ALP')) X]; % X=[R(:,strcmp(time_series_names,'Albumin')) X]; % % % % max_N=min(N1,N2); % % % X=X(:,1:max_N); % % % % % % X_orig=X; % % % % % % scores=zeros(max_N,3); % % % % % % for idx=10:max_N % % % % % % X=X_orig(:,1:idx); % % % %[best_th0,max_score_0,D] = opt_th(X,IHD); % % % % % % % % [best_th1,max_score_1,D0] = opt_th(X(Gender_a==0,:),IHD(Gender_a==0)); % % % % [best_th2,max_score_2,D1] = opt_th(X(Gender_a==1,:),IHD(Gender_a==1)); % % % % % % [best_th0,max_score_0,D] = opt_th_valid(X,IHD); % % % [best_th1,max_score_1,D0] = opt_th_valid(X(Gender_a==0,:),IHD(Gender_a==0)); % % % [best_th2,max_score_2,D1] = opt_th_valid(X(Gender_a==1,:),IHD(Gender_a==1)); % % % % % % scores(idx,:)=[max_score_1 max_score_2 max_score_0]; % % % end % % % % % % figure(1) % % % plot(scores(:,1),'g') % % % hold on % % % plot(scores(:,2),'r') % % % plot(scores(:,3),'b') % % % pause(.1) % max_N=min(N1,N2); % X=X(:,1:20); % % [best_th1,max_score_1,D0] = opt_th(X(Gender_a==0,:),IHD(Gender_a==0)); % [best_th2,max_score_2,D1] = opt_th(X(Gender_a==1,:),IHD(Gender_a==1)); DATA(:,1)=0; DATA(Gender_a==0,2)=D0(:,2); DATA(Gender_a==1,2)=D1(:,2); DATA(Gender_a==0,3)=D0(:,3); DATA(Gender_a==1,3)=D1(:,3); function [best_th,max_score1,BEST_DATA]=opt_th(X_,IHD_) % num_params=size(time_series_names,1); DATA_=zeros(size(IHD_,1),3); B = mnrfit(X_,IHD_+1); PHAT = mnrval(B,X_); BEST_DATA=[]; max_score1=0; max_score2=0; best_th=0; for class_th=.1:.01:0.5 DATA_(:,1)=str2double('0000'); DATA_(:,2)=PHAT(:,2); DATA_(:,3)=PHAT(:,2)> class_th; DATA_(DATA_(:,2)<0.01,2)=0.01; DATA_(DATA_(:,2)>0.99,2)=0.99; % if(~isempty(results)) % Calculate sensitivity (Se) and positive predictivity (PPV) TP=sum(DATA_(IHD_==1,3)); FN=sum(~DATA_(IHD_==1,3)); FP=sum(DATA_(IHD_==0,3)); Se=TP/(TP+FN); PPV=TP/(TP+FP); show=0; % if show is 1, the decile graph will be displayed by lemeshow() % H=lemeshow([IHD_ DATA_(:,2)],show); % Use the title of figure to display the results % title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ]) % The event 1 score is the smaller of Se and PPV. score1 = min(Se, PPV); if score1>max_score1 max_score1=score1; best_th=class_th; % max_score2=H; BEST_DATA=DATA_; % display(['Unofficial Event 1 score: ' num2str(score1)]); end % end end % survivals1=sum(X==1 & IHD==0); % deaths1=sum(X==1 & IHD==1); % survivals2=sum(X==0 & IHD==0); % deaths2=sum(X==0 & IHD==1); % % disp([' non NaNs:' num2str(deaths1/(deaths1+survivals1)) ]) % disp([' NaNs:' num2str(deaths2/(deaths2+survivals2)) ]) % max_score1 end function [best_th,max_score1,BEST_DATA]=opt_th_valid(X_,IHD_) % num_params=size(time_series_names,1); n=size(X_,1); s=zeros(n,1); s(1:round(n/2))=1; s=boolean(s); B = mnrfit(X_(s,:),IHD_(s)+1); PHAT = mnrval(B,X_(~s,:)); BEST_DATA=[]; DATA_=zeros(size(PHAT,1),3); max_score1=0; max_score2=0; best_th=0; for class_th=.1:.01:0.5 DATA_(:,1)=str2double('0000'); DATA_(:,2)=PHAT(:,2); DATA_(:,3)=PHAT(:,2)> class_th; DATA_(DATA_(:,2)<0.01,2)=0.01; DATA_(DATA_(:,2)>0.99,2)=0.99; % if(~isempty(results)) % Calculate sensitivity (Se) and positive predictivity (PPV) TP=sum(DATA_(IHD_(~s)==1,3)); FN=sum(~DATA_(IHD_(~s)==1,3)); FP=sum(DATA_(IHD_(~s)==0,3)); Se=TP/(TP+FN); PPV=TP/(TP+FP); % show=0; % if show is 1, the decile graph will be displayed by lemeshow() % H=lemeshow([IHD_ DATA_(:,2)],show); % Use the title of figure to display the results % title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ]) % The event 1 score is the smaller of Se and PPV. score1 = min(Se, PPV); if score1>max_score1 max_score1=score1; best_th=class_th; % max_score2=H; BEST_DATA=DATA_; % display(['Unofficial Event 1 score: ' num2str(score1)]); end % end end % survivals1=sum(X==1 & IHD==0); % deaths1=sum(X==1 & IHD==1); % survivals2=sum(X==0 & IHD==0); % deaths2=sum(X==0 & IHD==1); % % disp([' non NaNs:' num2str(deaths1/(deaths1+survivals1)) ]) % disp([' NaNs:' num2str(deaths2/(deaths2+survivals2)) ]) % % % max_score1 end end