function featureVectors = featureExtractionLDA(matrixData,weightsLDA) % Feature extraction based on LDA % % Inputs: % % matrixData - d*t*n tensor containing n matrices of size d*t, where n is the number of samples. % weightsLDA - LDA direction obtained with "getLDAweights.m" % % Ouput: % % featureVectors - n*d matrix containing n d-dimensional feature vectors % % % Jukka-Pekka Kauppi % jukka-pekka.kauppi@helsinki.fi % University of Helsinki, Department of Computer Science % 23.8.2012 siz = size(matrixData); d = siz(1); t = siz(2); n = siz(3); featureVectors = zeros(n,d); for m = 1:d X = squeeze(matrixData(m,:,:))'; % n*t matrix featureVectors(:,m) = X*weightsLDA(d,:)'; end