function lin_reg_classifier4(IHD,time_series_names,MD_DATA_D,MD_DATA_DD,MD_DATA,DESCRIPTORS,des_names,R,MD_VARI,MEAN_DATA_24,MEAN_DATA_48,DYN_DATA) Y=(IHD-1)+IHD; % classes y ={-1,1} % X=[MEAN_DATA_24 MEAN_DATA_48]; %X=[MEAN_DATA_24(params_to_use)]; % normeeraus ja keskiarvon poisto X=[MEAN_DATA_24 MEAN_DATA_48 ]; %X=[X1]; %X=[X]; AGE_a=DESCRIPTORS(:,strcmp(des_names,'Age')); Gender_a=DESCRIPTORS(:,strcmp(des_names,'Gender')); ICUTYPE_a=[DESCRIPTORS(:,strcmp(des_names,'ICUType'))]; ICUTYPE_t=ICUTYPE_a; ICUTYPE_a(ICUTYPE_t==1)=2; ICUTYPE_a(ICUTYPE_t==2)=4; ICUTYPE_a(ICUTYPE_t==3)=1; ICUTYPE_a(ICUTYPE_t==4)=3; X=[AGE_a ICUTYPE_a X]; %if des{:,strcmp(des_names,'Gender')}==0 %X_new_rec=zeros(size(X)); % savefile='gender0.mat'; savefile='gender0_60.mat'; savefile='gender0_60_ppca'; load(savefile,'N2','PHAT_all','best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B'); % S_new=calc_S_new_data(X',A,V,Mu,N,CV); X_new_rec =( repmat(Mu,1,size(S,2)) + (A*S))'; % mu1=Mu; % sets outliers to group mean % X1=X_new_rec(:,3:39); % X2=X_new_rec(:,40:end); % mu24=mu(3:39); % mu48=mu(40:end); % for param_idx=1:size(X1,2) % limits=get_param_limits_by_name(time_series_names{param_idx}); % data=X1(:,param_idx); % data(datalimits(2) | isnan(data) )=mu24(param_idx); % X1(:,param_idx)=data; % % data=X2(:,param_idx); % data(datalimits(2) | isnan(data))=mu48(param_idx); % X2(:,param_idx)=data; % % end % X_new_rec=[X_new_rec(:,1:2) X1 X2]; sigma0 = sigma; sigma0(sigma0==0) = 1; z = bsxfun(@minus,X_new_rec', mu'); z = bsxfun(@rdivide, z, sigma0'); z(isnan(z))=0; % x_in=(pinv(pc1)*z)'; % X(Gender_a==0,:)=x_in(Gender_a==0,:); z=z'; X(Gender_a==0,:)=z(Gender_a==0,:); % savefile='gender1.mat'; savefile='gender1_60.mat'; savefile='gender1_60_ppca'; load(savefile,'N2','PHAT_all','best_th','A','S','Mu','V', 'CV', 'HP', 'LC','N','pc1','mu','sigma','B'); % mu2=Mu; % plot(mu1) % hold on % plot(mu2) % S_new=calc_S_new_data(X(Gender_a==1,:),A,V,Mu,N,CV); X_new_rec =( repmat(Mu,1,size(S,2)) + A*S)'; % sets outliers to group mean % X1=X_new_rec(:,3:39); % X2=X_new_rec(:,40:end); % mu24=mu(3:39); % mu48=mu(40:end); % for param_idx=1:size(X1,2) % limits=get_param_limits_by_name(time_series_names{param_idx}); % data=X1(:,param_idx); % data(datalimits(2) | isnan(data) )=mu24(param_idx); % X1(:,param_idx)=data; % % data=X2(:,param_idx); % data(datalimits(2) | isnan(data))=mu48(param_idx); % X2(:,param_idx)=data; % % end % % X_new_rec=[X_new_rec(:,1:2) X1 X2]; sigma0 = sigma; sigma0(sigma0==0) = 1; z = bsxfun(@minus,X_new_rec', mu'); z = bsxfun(@rdivide, z, sigma0'); % x_in=(pinv(pc1)*z)'; % X(Gender_a==1,:)=x_in(Gender_a==1,:); z=z'; z(isnan(z))=0; X(Gender_a==1,:)=z(Gender_a==1,:); X(Gender_a==-1,:)=z(Gender_a==-1,:); matrixData=DYN_DATA; clabels=IHD; weightsLDA = getLDAweights(matrixData,clabels); featureVectors = featureExtractionLDA(matrixData,weightsLDA); X_dyn=featureVectors; %X=[ MD_DATA_D MD_DATA_DD MD_DATA double(R) zscore(MD_VARI) X]; X=[Gender_a double(R) MD_DATA_D MD_DATA_DD MD_DATA MD_VARI X_dyn X]; %X=[ MD_DATA MD_VARI X]; R=~isnan(X); s=sum(R,2)==size(X,2); % selects only values that do not contain NaNs dis=sum(R,2)~=size(X,2); X=X(s,:); IHD=IHD(s); s_selector=s; %B=log_reg(X,Y,R); %B=teach_log_reg(X,Y,R); alpha = 0:0.05:0.7; lambda = 0:0.05:0.7; scores=zeros(length(alpha)*length(lambda),7); scores2=zeros(length(alpha)*length(lambda),7); idx=1; n=size(X,1); s=zeros(n,1); s(1:round(n/2))=1; s=boolean(s); dataTrain=X(s,:); clabelsTrain=IHD(s); labelsTrain=~IHD(s)+1; dataTest=X; labelsTest=~IHD+1; dataValid=X(~s,:); labelsValid=~IHD(~s)+1; %% jukkiksen starts % for alpha=0:0.1:0.6 % for lambda=0:0.1:0.6 for alpha=0:0.05:0.7 for lambda=0:0.05:0.7 D = size(dataTrain,2); % dimension maxIter = 7000; w_init = 0.1*ones(D+1,1); % initialize parameters % optimoi malli, siis data annetaan normaalisti piirrevektorina: [w_opt,fx,it] = minimize(w_init, 'objFuncLR', maxIter, dataTrain, clabelsTrain, alpha, lambda); % laske ennustustarkkuus: [ResTrain,labelsEstimTrain,probsTrain,allProbsTrain] = predict_LRoma(w_opt,dataTrain,labelsTrain); [ResValid,labelsEstimValid,probsValid,allProbsValid] = predict_LRoma(w_opt,dataValid,labelsValid); [ResTest,labelsEstimTest,probsTest,allProbsTest] = predict_LRoma(w_opt,dataTest,labelsTest); %% jukkiksen ends %[best_th,max_score1,BEST_DATA]=opt_th(IHD(s),allProbsTrain); [best_th1,max_score11,th1,max_score2_11,BEST_DATA]=opt_th(IHD(~s),allProbsValid); %[best_th,max_score12,th2,max_score2_12,BEST_DATA]=opt_th(~IHD(~s),allProbsValid); [best_th2,max_score21,th2,max_score2_21,BEST_DATA]=opt_th(IHD,allProbsTest); %[best_th,max_score22,th2,max_score2_22,BEST_DATA]=opt_th(~IHD(s),allProbsTrain); % [best_th1,max_score11,th1,max_score2_11,BEST_DATA]=opt_th_icu(IHD(~s),allProbsValid,ICUTYPE_a(~s)); % [best_th2,max_score21,th2,max_score2_21,BEST_DATA]=opt_th_icu(IHD,allProbsTest,ICUTYPE_a); scores(idx,:)=[alpha lambda best_th1 max_score11 th1 max_score21 0]; scores2(idx,:)=[alpha lambda best_th2 max_score2_11 th2 max_score2_21 0]; idx=idx+1; end end scores=scores(1:idx-1,:); scores2=scores2(1:idx-1,:); [m,i]=max(scores(:,4)); save('score4_1.mat','scores') [m,i]=min(scores2(:,4)); save('score4_2.mat','scores2') function [best_th,max_score1,best_th2,max_score2,BEST_DATA]=opt_th_icu(IHD_,P,icu) num_params=size(time_series_names,1); DATA=zeros(size(IHD_,1),3); %B = mnrfit(X_,IHD_+1); PHAT = P'; max_score1=0; max_score2=0; best_th=0; best_th2=0; for class_th1=.1:.1:0.5 for class_th2=.1:.1:0.5 for class_th3=.1:.1:0.5 for class_th4=.1:.1:0.5 DATA(:,1)=str2double('0000'); DATA(:,2)=PHAT(:,1); DATA(icu==1,3)=PHAT(icu==1,1)> class_th1; DATA(icu==2,3)=PHAT(icu==2,1)> class_th2; DATA(icu==3,3)=PHAT(icu==3,1)> class_th3; DATA(icu==4,3)=PHAT(icu==4,1)> class_th4; DATA(DATA(:,2)<0.01,2)=0.01; DATA(DATA(:,2)>0.99,2)=0.99; % if(~isempty(results)) % Calculate sensitivity (Se) and positive predictivity (PPV) TP=sum(DATA(IHD_==1,3)); FN=sum(~DATA(IHD_==1,3)); FP=sum(DATA(IHD_==0,3)); Se=TP/(TP+FN); PPV=TP/(TP+FP); show=0; % if show is 1, the decile graph will be displayed by lemeshow() H=lemeshow([IHD_ DATA(:,2)],show); % Use the title of figure to display the results % title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ]) % The event 1 score is the smaller of Se and PPV. score1 = min(Se, PPV); if score1>max_score1 max_score1=score1; % best_th=[class_th1 class_th2 class_th3 class_th4] ; best_th=[class_th1 ] ; % max_score2=H; BEST_DATA=DATA; % display(['Unofficial Event 1 score: ' num2str(score1)]); end if H>max_score2 max_score2=H; best_th2=class_th1 ; % BEST_DATA=DATA; % display(['Unofficial Event 1 score: ' num2str(score1)]); end % end end end end end end function [best_th,max_score1,best_th2,max_score2,BEST_DATA]=opt_th(IHD_,P) num_params=size(time_series_names,1); DATA=zeros(size(IHD_,1),3); %B = mnrfit(X_,IHD_+1); PHAT = P'; max_score1=0; max_score2=0; best_th=0; best_th2=0; for class_th=.1:.01:0.5 DATA(:,1)=str2double('0000'); DATA(:,2)=PHAT(:,1); DATA(:,3)=PHAT(:,1)> class_th; DATA(DATA(:,2)<0.01,2)=0.01; DATA(DATA(:,2)>0.99,2)=0.99; % if(~isempty(results)) % Calculate sensitivity (Se) and positive predictivity (PPV) TP=sum(DATA(IHD_==1,3)); FN=sum(~DATA(IHD_==1,3)); FP=sum(DATA(IHD_==0,3)); Se=TP/(TP+FN); PPV=TP/(TP+FP); show=0; % if show is 1, the decile graph will be displayed by lemeshow() H=lemeshow([IHD_ DATA(:,2)],show); % Use the title of figure to display the results % title(['H= ' num2str(H) ' Se= ' num2str(Se) ' PPV= ' num2str(PPV) '. ' num2str(class_th) ]) % The event 1 score is the smaller of Se and PPV. score1 = min(Se, PPV); if score1>max_score1 max_score1=score1; best_th=class_th; % max_score2=H; BEST_DATA=DATA; % display(['Unofficial Event 1 score: ' num2str(score1)]); end if H>max_score2 max_score2=H; best_th2=class_th; % BEST_DATA=DATA; % display(['Unofficial Event 1 score: ' num2str(score1)]); end % end end end end