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Abstract

In this paper, a robust framework is presented for fECG
extraction from maternal abdomen recordings. The idea
is based on extracting the fECG from contaminated sig-
nals using a multistage interference and noise cancelation
method, designed specifically according to the time, space
and frequency characteristics of the fECG and its inter-
ferences. The suitable combination of different denoising
methods has both the advantages of multichannel and sin-
gle channel denoising schemes. The proposed framework
has also exploited the benefits of both temporal and sta-
tistical properties of ECG signals. Moreover, the ranking
property of the algorithm, in comparison to permutation
ambiguity of the independent component analysis (ICA)
methods, helps reliable automatic detection of fECG signal
in long recordings. The results have shown that the pro-
posed framework outperforms conventional ICA and has
effectively detected the fetal QRS in presence of full-rank
maternal interference.

1. Introduction

The noninvasive extraction of fetal electrocardiogram
(fECG) from multichannel maternal abdomen recordings
is an emerging technology used for fetal cardiac diagnosis.
Blind Source Separation (BSS) and Independent Compo-
nent Analysis (ICA) are among the well-known techniques
for the extraction of fECG, which have been shown to be
more robust and accurate than most conventional methods
[1]. However, ICA-based methods, despite their vast and
effective applications have some intrinsic ambiguities ac-
cording to their simplified assumptions. Typically, it is as-
sumed that sources are independent and equal to the num-
ber of sensors [2], the number of sources is fixed, sources
are stationary and the mixture is time invariant [3]. As
a result, the performance of ICA degrades in presence of
full-rank Gaussian noise [2], correlated and/or distributed
sources. The permutation and sign ambiguities in consec-
utive blocks also limit the automatic fECG extraction in

long recordings.
In this paper, a robust framework is presented that can

deal with fECG extraction problems even in the cases that
ICA assumptions are not satisfied. This method consists of
a set of algorithms for signal subspace extraction, iterative
multichannel subspace decomposition based denoising and
Bayesian filtering. The suitable combination of these ef-
fective methods, introduced in recent literatures, combines
the advantages of multichannel and single channel filter-
ing and exploits the information of temporal and statistical
properties of the data.

2. Method

Electrical signals recorded from the abdomen of a preg-
nant woman consist of mixtures of various signals includ-
ing the mECG, fECG, fetal electroencephalogram (fEEG),
baseline wanders and muscle contractions considered as
noise. The following linear instantaneous data model has
been shown to be rather realistic for modeling multichan-
nel maternal abdominal signals [4]:

x(t) = Hm(t)sm(t) + Hf (t)sf (t) + Hη(t)v(t) + n(t)
∆
= xm(t) + xf (t) + η(t) + n(t)

(1)
where sm(t), sf (t) and v(t) are, respectively, the ma-
ternal signal source, fetal signal source and structured
noises (such as electrode movements, muscle contrac-
tions and fEEG ). n(t) is full-rank measurement noise and
Hm(t),Hf (t) and Hη(t) are the transfer functions that
model the propagation media [5]. In a realistic model, the
cardium (of the mother and fetus) should be considered as
a distributed signal source. Therefore, sm(t) and sf (t) are
generally full-rank signals [6]; but the effective number of
dimensions can be less depending on the sensor position-
ing and SNR.

The main purpose of conventional BSS methods is to
find a separating matrix B(t) such that ŝ(t) = B(t)x(t) is
an acceptable estimation of sf (t) [7]. In the hereby pro-
posed method, the objective is to extract xf (t) from its
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Figure 1. General scheme of the Multistage Interference
and Noise Cancelation (MINC)

mixture through successive noise and interference cancela-
tion methods, designed specifically according to their time,
space and frequency characteristics. The general scheme
of the proposed method is shown in Fig.1. The different
parts of the scheme are explained in more details in the
following sections.

2.1. Maternal ECG removal

One of the most challenging interference is the mater-
nal cardiac source (mECG) that can be up to two orders
of magnitude stronger than the fECG [8]. After conven-
tional preprocessing to remove other noises and artifacts,
a deflation subspace decomposition procedure, which we
call denoising by deflation (DEFL), was used to remove
the mECG interference [4, 6] .

The DEFL consists of a sequence of linear decomposi-
tion, denoising and linear re-composition as shown in Fig.
2. The data is first transformed to the new subspace using
πCA, such that the data is ranked from most to least resem-
blance to the maternal reference signal in sense of period-
icity [9]. Next, the first L components (in the transform
domain) are passed through a denoising stage, which sepa-
rates the mECG contents. Finally, the residual signals and
the N − L unchanged channels are back-projected to the
original subspace. The procedure is repeated in multiple
iterations until all the maternal components within the data
are eliminated.

2.2. Background noise cancellation

At this stage, the mECG is considered to be removed.
However, the background noise has an amplitude close to
the fECG. Therefore, the output still has a low SNR and
should be denoised prior to fetal QRS detection.

At this stage, we benefit from a subspace decomposition
scheme. To separate the signal and noise subspaces, the
signal model at this stage can be stated as follows:

x̂(t) = Hfsf (t) + w(t) (2)

where x̂(t) ∈ Rn is the remaining observation vector after
previous denoising processes and w(t) ∈ Rn consists of

Figure 2. General iterative projection and back projection
denoising scheme

all the non-cardiac noises that have not yet been removed.
w(t) is assumed as full-rank white Gaussian noise with
a covariance matrix equal to σ2I. With the assumption
of independence of signal and noise, the signal and noise
subspaces can be considered as orthogonal complements.
Therefore, the data covariance matrix can be modeled as
follows [10]:

R = AQAT + σ2I (3)

where R = E
{
x(t)xT(t)

}
and Q = E

{
s(t)sT(t)

}
are

covariance matrices of x and s, respectively. By eigen-
value decomposition (EVD) of R, we have:

R = [Us Uw]

[
Λs 0

0 Λw

]
[Us Uw]

T

= UsΛsU
T
s + UwΛwUT

w

(4)

where Us contains the eigenvectors of the signal sub-
space corresponding to the m largest eigenvalues of
Λs = diag(λ1, · · · , λm) in descending order and Uw

contains the eigenvectors of the noise subspace corre-
sponding to the N − m smallest eigenvalues of Λw =
diag(λm+1, · · · , λN−m). This means that using EVD of
observation covariance matrix, the observations can be di-
vided into signal subspace and noise subspace, provid-
ing the source dimension m be known [10]. The effec-
tive number of dimensions (m) can be estimated using re-
lated methods for estimating the signal/noise dimensional-
ity [11, 12].

In this work, the idea of signal subspace extraction is uti-
lized in an iterative projection and back projection denois-
ing procedure, as shown in Fig. 2. For this, the data is pro-
jected using the transformation matrix W = [Us Uw].
The first M channels in the transformated domain, cor-
responding to the signal subspace, are denoised through
wavelet denoising. The last N −M channels, correspond-
ing to the noise subspace, are set to zero. The data is then
back projected and the process is repeated in multiple iter-
ations. As a result, the full-rank background noise is effec-
tively removed.

2.3. fECG signal enhancement

After removing the mECG and other background noise,
the fetal QRS (fQRS) is the dominant signal that should
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(a)The histogram of error score

(b)The mean value of error scores

Figure 3. The error score in three different methods

be extractable. However, considering the fact that noises
and interferences in the previous stages may not have been
completely removed, the fECG can be still contaminated
by some background noises. At this stage, the quality of
the fECG signal is enhanced using a single channel de-
noiser based on Kalman filtering, introduced in [6, 13, 14].

3. Results

To evaluate the performance of the proposed method,
the accuracy of the fQRS detection is computed using the
PhysioNet challenge dataset [15]. The dataset consists of
four channels one minute signals with high level of noise
and full-rank maternal ECG interference and somehow
correlated channels. The evaluation is based on the WFDB
TACH scoring function that calculates the mean square er-
ror between the reference and the estimated fQRS points
[15]. The proposed framework, which we call Multistage
Interference and Noise Cancelation (MINC) is compared
with the two other methods: ICA and ICA plus DEFL.
Both of these methods consists of preprocessing, post pro-
cessing and channel selection stages similar to the pro-
posed framework. The histogram and the average value of
the error in the dataset are shown in Fig. 3. As we can see,
the average value of the error in ICA is 1390 and its distri-
bution is wide. So according to the quality of the data the
score error can be up to 4150. Adding the DEFL method
to the ICA, as a preprocessing for eliminating the mECG,
decreased the average error score to 319 and the histogram
is also narrower. The best result is obtained for the pro-
posed method, MINC, with the average error of 170. As
we can see from Fig. 3, the amount of error is concen-
trated on the average except for two signals that have 655

and 1090 . Based on this result, MINC has had the most re-
liable and robust performance as compared with the other
benchmark methods. This outperformance can be due to
the limitations and assumptions that are imposed in con-
ventional ICA methods, which restrict their application in
general scenarios.

An example of the fECG extracted algorithms applied
on the Physionet data set is also shown in Fig.4. The se-
lected input signal is a rather clean sample and we expect
all the three methods to at least extract the fQRS com-
plexes. Figs. 4(a), 4(b) and 4(c) show the results at the
outputs of preprocessing, mECG removal and background
noise cancellation stages, respectively. Figs. 4(d), 4(e)
and 4(f) indicate the fECG extracted by MINC, DEFL plus
ICA and ICA methods. We can see that in ICA, the mECG
signal appears in three of the channels and a noisy fECG
signal is appeared in the forth channel. Adding the DEFL
method to ICA, has removed the effect of the mECG and
leads to better fECG in other channels. The best result is
obtained for the proposed method, in which the clear fECG
containing the main fQRS complexes is visible in the out-
put. Besides, due to the fact that in this method the actual
contribution of the fECG signal projected on the leads is
detected, it is somehow easier to interpret for physicians.

4. Conclusion

In this paper, a method was proposed for extracting the
fECG signal from maternal abdomen recordings. The idea
is based on separating the contribution of the fECG sig-
nal in each of the channels from the other contaminat-
ing signals and noises, through a multistage interference
and noise cancelation scheme. Using this method, while
preserving the original dimensions of the data, the con-
tribution of the fECG in each of the channels can be ex-
tracted distinctly. Estimating the projected fECG in each
of the leads is also more interpretative for the physicians,
as compared to linear decomposition of different channels.
Besides, due to the multichannel nature of the extracted
fECG, better improvement can be obtained on the esti-
mated fQRS complexes and RR intervals, depending on
the quality of different channels. The results have shown
that the proposed method has significant performance in
comparison to conventional ICA methods, due to the fact
that it can deal with the situations that conventional ICA
assumptions are not satisfied. In future studies, the hereby
developed technique can be extended to online processing
scenarios.
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(a)After preprocessing (b)After mECG removal (c)After signal subspace extraction
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