function [fetal_QRSAnn_est,QT_Interval] = physionet2013(tm,ECG) % This algorithm for Physionet/CinC competition 2013. Entry 2 Fetal PCA % % % [fetal_QRSAnn_est,QT_Interval] = physionet2013(tm,ECG) where the inputs and outputs are specified % below. % inputs: % ECG: 4x60000 (4 channels and 1min of signal at 1000Hz) matrix of % abdominal ECG channels. % tm : Nx1 vector of time in milliseconds % output: % fetal_QRSAnn_est: FQRS Annotations each value indicates the position of % one of the FQRS detected by the algorithm. % QT_Interval: 1x1 estimated fetal QT duration % % Modified By: Aruna Deogire, MET's Institute of Engineering,Nashik,India % email - (arunadeogire@gmail.com) % Last updated: August 24th, 2013 by Aruna Deogire % ---- check size of ECG ---- if size(ECG,2)>size(ECG,1) ECG = ECG'; end % Remove NaN A=ECG(:,1); A(isnan(A))=0; ECG(:,1)=A; B=ECG(:,2); B(isnan(B))=0; ECG(:,2)=B; C=ECG(:,3); C(isnan(C))=0; ECG(:,3)=C; D=ECG(:,4); D(isnan(D))=0; ECG(:,4)=D; fs = 1000; % sampling frequency N = size(ECG,2); % number of abdominal channels debug = 1; % enter debug mode? % ---- preprocessing ---- [FilteredECG] = preprocessing(ECG,fs); % Mother QRS Detection % ************************************************************************* e1=FilteredECG(:,1); MQRS1=PeakDetection(FilteredECG(:,1),1/fs);Mpoint1=e1(MQRS1); e2=FilteredECG(:,2); MQRS2=PeakDetection(FilteredECG(:,2),1/fs);Mpoint2=e2(MQRS2); e3=FilteredECG(:,3); MQRS3=PeakDetection(FilteredECG(:,3),1/fs);Mpoint3=e3(MQRS3); e4=FilteredECG(:,4); MQRS4=PeakDetection(FilteredECG(:,4),1/fs);Mpoint4=e4(MQRS4); % % Rwave detection by Rpeak Algo % [Mpoint1 MQRS1] = Rpeak(FilteredECG(:,1),fs); % [Mpoint2 MQRS2] = Rpeak(FilteredECG(:,2),fs); % [Mpoint3 MQRS3] = Rpeak(FilteredECG(:,3),fs); % [Mpoint4 MQRS4] = Rpeak(FilteredECG(:,4),fs); % %__________________________________________________________________________ % Mother QRS Cancellation % ************************************************************************* FECG1 = MECGcancellation(MQRS1,FilteredECG(:,1)',fs,20); FECG2 = MECGcancellation(MQRS2,FilteredECG(:,2)',fs,20); FECG3 = MECGcancellation(MQRS3,FilteredECG(:,3)',fs,20); FECG4 = MECGcancellation(MQRS4,FilteredECG(:,4)',fs,20); %__________________________________________________________________________ % Postprocessing % ************************************************************************* fs=1000;Smooth_Period=149; wav_typ='db6'; level=7; R1=smooth(FECG1,Smooth_Period);FECG12=FECG1'-R1; R2=smooth(FECG2,Smooth_Period);FECG22=FECG2'-R2; R3=smooth(FECG3,Smooth_Period);FECG32=FECG3'-R3; R4=smooth(FECG4,Smooth_Period);FECG42=FECG4'-R4; % [c,l]=wavedec(FECG1,level,wav_typ); FECG12 = wden(c,l,'minimaxi','s','sln',level,wav_typ); % FECG12=filtering(FECG1,fs,kind); % [c,l]=wavedec(FECG2,level,wav_typ); FECG22 = wden(c,l,'minimaxi','s','sln',level,wav_typ); % FECG22=filtering(FECG2,fs,kind); % [c,l]=wavedec(FECG3,level,wav_typ); FECG32 = wden(c,l,'minimaxi','s','sln',level,wav_typ); % FECG32=filtering(FECG3,fs,kind); % [c,l]=wavedec(FECG4,level,wav_typ); FECG42 = wden(c,l,'minimaxi','s','sln',level,wav_typ); % FECG42=filtering(FECG4,fs,kind); %__________________________________________________________________________ % PCA % ************************************************************************* Y=[FECG12 FECG22 FECG32 FECG42]; Y=Y(1:length(Y),:);[COEFF,SCORE] = princomp(Y); %__________________________________________________________________________ % PeakDetection % ************************************************************************* e=SCORE(:,1); FQRS=PeakDetection(SCORE(:,1),2/fs);Fpoint=e(FQRS); % [Fpoint FQRS] = Rpeak(SCORE(:,1),fs); % FT5=FQRS'; S = e; %__________________________________________________________________________ % QT Point Detections % Q Point Detection %************************************************************************* LQ = length(FQRS); stepq=fs*0.02; % interval to search Q for i=2:LQ-1 j=FQRS(i); [Q,tq]=min(S(j-stepq:j)); j=j-stepq+tq-1; Qindex(i-1)=j; Qpoint(i-1)=S(j); end % Plot ECG signal with QRS onset marked % figure; % plot(S), hold on, plot(FQRS,Fpoint,'r.',Qindex,Qpoint,'k.'),xlim([10000 15000]);grid on; hold off; % _________________________________________________________________________ % S Point Detection %************************************************************************* LS = length(FQRS); steps=fs*0.02; % interval to search Q for i=2:LS-1 j=FQRS(i); [Q,ts]=min(S(j:j+steps)); j=j+ts; Sindex(i)=j; Spoint(i)=S(j); end % Plot ECG signal with QRS onset marked % figure; % plot(S), hold on, plot(FQRS,Fpoint,'r.',Qindex,Qpoint,'k.',Sindex,Spoint,'k.'),xlim([20000 30000]);grid on; hold off; % _________________________________________________________________________ % T Point Detection %************************************************************************* LT = length(Sindex); stept=fs*0.02; % interval to search T for i=2:LT-1 j=Sindex(i); [Q,tt]=max(S(j:j+stept)); j=j+tt; Tindex(i)=j; Tpoint(i)=S(j); end % T End Detection %************************************************************************* LTe = length(Sindex); % for i=2:LTe-1 % j=Tindex(i); % while 1 % j=j+1; % a=S(j+1)-S(j); % b=S(j)-S(j-1); % if a>=0 & b<0 % Tendpoint(i)=S(j); % Tendindex(i)=j; % break; % end % end % end stepte=fs*0.01; % interval to search T for i=2:LTe-1 j=Tindex(i); [Q,tte]=min(S(j:j+stepte)); j=j+tte; Tendindex(i)=j; Tendpoint(i)=S(j); end QT = Qindex - Tendindex; QT_Interval = median(QT); %__________________________________________________________________________ %__________________________________________________________________________ fetal_QRSAnn_est = round(1000*FQRS'/fs); % QT_Interval = 0; end function [FilteredECG] = preprocessing(ECG,fs) % ---- preprocess the data ---- % Variable Initialization % ************************************************************************* fs=1000;Smooth_Period=149; wav_typ='db6'; level=7; % ************************************************************************* % Filter and BW removal Input Signal % ************************************************************************* [c,l]=wavedec(ECG(:,1),level,wav_typ); AD1 = wden(c,l,'minimaxi','s','sln',level,wav_typ); Pattern=smooth(AD1,Smooth_Period);AF1= AD1-Pattern; [c,l]=wavedec(ECG(:,2),level,wav_typ); AD2 = wden(c,l,'minimaxi','s','sln',level,wav_typ); Pattern=smooth(AD2,Smooth_Period);AF2= AD2-Pattern; [c,l]=wavedec(ECG(:,3),level,wav_typ); AD3 = wden(c,l,'minimaxi','s','sln',level,wav_typ); Pattern=smooth(AD3,Smooth_Period);AF3= AD3-Pattern; [c,l]=wavedec(ECG(:,4),level,wav_typ); AD4 = wden(c,l,'minimaxi','s','sln',level,wav_typ); Pattern=smooth(AD4,Smooth_Period);AF4= AD4-Pattern; FilteredECG=[AF1 AF2 AF3 AF4]; %Vector of Filtered Signals % ************************************************************************* % FilteredECG = ECG; end function residual = MECGcancellation(peaks,ECG,fs,nbCycles) % MECG cancellation algorithm inspired from [1]. % % inputs: % fs: sampling frequency % nbCycles: number of cycles on which to build the mean MECG template % ECG: matrix of abdominal ECG channels. % peaks: MQRS markers in seconds. Each marker corresponds to the % position of a MQRS. % % output: % residual: residual containing the FECG. % % Author: Joachim Behar - IPMG Oxford (joachim.behar@eng.ox.ac.uk) % Last updated: 03_02_2013 % % [1] Martens S et al. A robust fetal ECG detection method for % abdominal recordings. Physiol. Meas. (2007) 28(4) 373�388 % ---- constants ---- r = nbCycles; ECG_last_r_cycles = zeros(0.7*fs,r); Pstart = 0.25*fs-1; Tstop = 0.45*fs; N = length(peaks); % number of MECG QRS ECG_temp = zeros(1,length(ECG)); % ---- ECG template ---- for i=1:r peak_nb = peaks(i+1); % +1 to unsure full cycles ECG_last_r_cycles(:,i) = ECG(peak_nb-Pstart:peak_nb+Tstop)'; end ECG_mean = mean(ECG_last_r_cycles,2); % ---- MECG cancellation ---- for i=1:N if peaks(i)>Pstart && length(ECG)-peaks(i)>Tstop M = zeros (0.7*fs,3); M(1:0.2*fs,1) = ECG_mean(1:Pstart-0.05*fs+1); M(0.2*fs+1:0.3*fs,2) = ECG_mean(Pstart-0.05*fs+2:Pstart+0.05*fs+1); M(0.3*fs+1:end,3) = ECG_mean(Pstart+2+0.05*fs:Pstart+1+Tstop); a = (M'*M)\M'*ECG(peaks(i)-Pstart:peaks(i)+Tstop)'; ECG_temp(peaks(i)-Pstart:peaks(i)+Tstop) = a(1)*M(:,1)'+a(2)*M(:,2)'+a(3)*M(:,3)'; end end % compute residual residual = ECG - ECG_temp; end % function [SelectedResidual,ChannelNb] = ChannelSelectionOrCombination(FECG) % % This function is used to select one of the four abdominal channels % % that are available or to combine information from these channels % % (e.g. using PCA) before FQRS detection % ChannelNb = 1; % SelectedResidual = FECG(:,ChannelNb); % channel 1 is arbitrarily selected here % end % % function FECG = ResidualPostProcessing(FECG) % % if postprocessing is performed on the residuals. % end % function peaks = PeakDetection(x,ff,varargin) % % peaks = PeakDetection(x,f,flag), % R-peak detector based on max search % % inputs: % x: vector of input data % f: approximate ECG beat-rate in Hertz, normalized by the sampling frequency % flag: search for positive (flag=1) or negative (flag=0) peaks. By default % the maximum absolute value of the signal, determines the peak sign. % % output: % peaks: vector of R-peak impulse train % % Notes: % - The R-peaks are found from a peak search in windows of length N; where % N corresponds to the R-peak period calculated from the given f. R-peaks % with periods smaller than N/2 or greater than N are not detected. % - The signal baseline wander is recommended to be removed before the % R-peak detection % % % Open Source ECG Toolbox, version 1.0, November 2006 % Released under the GNU General Public License % Copyright (C) 2006 Reza Sameni % Sharif University of Technology, Tehran, Iran -- GIPSA-Lab, INPG, Grenoble, France % reza.sameni@gmail.com % Last modified 03_02_2013: Joachim Behar, IPMG Oxford. % This program is free software; you can redistribute it and/or modify it % under the terms of the GNU General Public License as published by the % Free Software Foundation; either version 2 of the License, or (at your % option) any later version. % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General % Public License for more details. N = length(x); peaks = zeros(1,N); th = .5; rng = floor(th/ff); if(nargin==3), flag = varargin{1}; else flag = abs(max(x))>abs(min(x)); end if(flag) for j = 1:N, % index = max(j-rng,1):min(j+rng,N); if(j>rng && jrng) index = N-2*rng:N; else index = 1:2*rng; end if(max(x(index))==x(j)) peaks(j) = 1; end end else for j = 1:N, % index = max(j-rng,1):min(j+rng,N); if(j>rng && jrng) index = N-2*rng:N; else index = 1:2*rng; end if(min(x(index))==x(j)) peaks(j) = 1; end end end % remove fake peaks I = find(peaks); d = diff(I); % z = find(d= 20*eavg for i=1:L if e1(i)>= 10*eavg % e1(i)=(eavg*5); e1(i)=0; end i=i+1; end disp('high peak criteria') Thd1 =eavg*3 % Thd1 =(mean(e1)/4)*10 e2=e1.*(e1>=Thd1); % figure;subplot(211),plot(e1,'r') ; subplot(212),plot(e2,'k') else Thd2 =(mean(e1)/2.5)*10; e2=e1.*(e1>=Thd2); disp('Normal'); end step=fs*.20; % interval to search R peak i=1; j=1; while i<=L-1 if e2(i)~=0 [Rpoint(j),Rindex(j)]=max(e1(i:(i+step)*((i+step)<=(L-1))+(L-1)*((i+step)>(L-1)))); Rindex(j)=Rindex(j)+i-1; j=j+1; i=i+step; end i=i+1; end Rpoint=e(Rindex); % [Rpoint, Rindex] = value and position of R peak end