function [ica,Ae,cerr]=kurtFpDeIca(X,epsilon,maxNumIter,debug) % -------------------------------------------------------------------------------------------- % Fixed point algorithm (FastICA, Hyvarinen) using kurtosis % % function [ica,Ae,cerr]=kurtFpDeIca(X,epsilon,maxNumIter,debug) % X : mixed signals (each row is a signal, must be centered) % epsilon : convergence stopping criterion (default=0.0001) % maxNumIter : maximum number of iterations (default=200) % debug : display each iteration of algorithm % % ica : separated signals % Ae : estimated mixing matrix (each row is a component) % cerr : convergence error (1-> convergence failure) % % Simple version using as many variables as sources % and deflationay orthogonalization % % -------------------------------------------------------------------------------------------- % Maurizio Varanini, Clinical Physiology Institute, CNR, Pisa, Italy % For any comment or bug report, please send e-mail to: maurizio.varanini@ifc.cnr.it % -------------------------------------------------------------------------------------------- % This program is free software; you can redistribute it and/or modify it under the terms % of the GNU General Public License as published by the Free Software Foundation; either % version 2 of the License, or (at your option) any later version. % % This program is distributed "as is" and "as available" in the hope that it will be useful, % but WITHOUT ANY WARRANTY of any kind; without even the implied warranty of MERCHANTABILITY % or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. % -------------------------------------------------------------------------------------------- if(nargin<2), epsilon= 0.0001; end if(nargin<3), maxNumIter=200; end if(nargin<4), debug=0; end [numVars, numSamples] = size(X); cerr = 0; % -------------------------- Whitening matrix estimation ----------------------- Rx=(X*X')/numSamples; % covariance matrix % Calculate the eigenvalues and eigenvectors of covariance matrix. [E, D] = eig (Rx); W = inv(sqrt (D)) * E'; % whitening matrix % W = E*inv(sqrt (D))*E'; % whitening matrix (W=sqrtm(Rx)) Z=W*X; % Whitened data numOfIC=numVars; fprintf('FastIca, kurt , deflationary \n'); fprintf('epsilon=%12.6f \n', epsilon); W = zeros(numVars); % The search for an independent component is repeated numOfIC times. for ic = 1:numOfIC, fprintf('Component=%3d\n',ic); % Take a random initial vector w = rand(numVars, 1) - .5; w = w / norm(w); % wOld = w + epsilon; wOld = zeros(size(w)); % Fixed-point iteration loop for a single IC. for iter = 1 : maxNumIter + 1 % Test for termination condition. % The algorithm converged if the direction of w and wOld is the same. absCos = abs(w' * wOld); if(1-absCos < epsilon), break, end if(debug), fprintf('it=%3d,%9.6f; ',iter, 1-absCos);end wOld=w; % Fixed point equation: % the Kurtosis gradient, on the right-hand side gives the new value for w w = (Z * ((Z' * w) .^ 3)) / numSamples - 3 * w; % Deflationary orthogonalization. % The current w vector is projected into the space orthogonal to the space % spanned by the previuosly found W vectors. w = w - W * W' * w; w = w / norm(w); end if(debug), fprintf('\'); end fprintf('numIt=%3d,%9.6f\n',iter, 1-absCos); % Save the w vector W(:, ic) = w; cerr = cerr | (1-absCos >= epsilon); if(cerr), fprintf(' ==> Convergence failure!\n');end end % if(cerr), Ae=[]; ica=[]; return; end Ae = E*sqrt(D)*W; % estimated mixing matrix ica = W'*Z; % separated components end %== function ================================================================ %