function QRSref=QRSdetectorF2(vadx,vdx,Fs,pth,RRst,RRsi,lensi,fb,pmQT) % -------------------------------------------------------------------------------------------- % QRSdetectorF2.m: QRS detector % QRS fiducial point as max signed derivative % It needs to start from a controlled signal interval % % Input parameters: % vadx : array of filtered absolute derivate values % vdx : array of filtered derivate values % Fs : sampling frequency % pth : threshold on derivative % RRst : RR (seconds) typical of the animal % RRsi : RR (seconds) initial value % lensi: initialization interval length (seconds) % fb : forward (0) - backward (1) direction flag % pmQt : fraction of QT length for QT mask (NOT used) % % Ouput parameters: % QRSref (reference point, max signed derivative ) % % Example: % qrsM=QRSdetectorF2(vadx,vdx,fs,0.4,0.86,1); % -------------------------------------------------------------------------------------------- % Author: Maurizio Varanini, Clinical Physiology Institute, CNR, Pisa, Italy % For any comment or bug report, please send e-mail to: maurizio.varanini@ifc.cnr.it % -------------------------------------------------------------------------------------------- % This program is free software; you can redistribute it and/or modify it under the terms % of the GNU General Public License as published by the Free Software Foundation; either % version 2 of the License, or (at your option) any later version. % % This program is distributed "as is" and "as available" in the hope that it will be useful, % but WITHOUT ANY WARRANTY of any kind; without even the implied warranty of MERCHANTABILITY % or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. % -------------------------------------------------------------------------------------------- if (nargin < 3), error ( 'At least 3 parameters are required' ); return end if (nargin < 4), pth=0.5; end if (nargin < 5), RRst=0.86; end % 0.86=humans % 0.25= mice if (nargin < 6), RRsi=RRst; end if (nargin < 7), lensi=RRsi*10; end if (nargin < 8), fb=0; end % 0=forward, 1=backward direction if (nargin < 9), pmQT=1; end RRtc=Fs*RRst; RRci=Fs*RRsi; lenci=lensi*Fs; % sqRRst=sqrt(RRst); % QTlen=0.420*sqRRst; % normal Qt length (RR=1 => QT=0.42s, humans) m=5; mu=0.01; alp=mu/10; % LMS algorithm parameters (RR adaptive predictive model) nqrsMap=ceil(length(vdx)/RRci)*2; % used only for vector preallocation QRSref=zeros(nqrsMap,1); RRcVz=zeros(nqrsMap,1); %maskQT=round((0.07+pmQT*QTlen)*Fs); % QT mask length (RR=1s => QT=0.42s, humans) wleftAmi=0.2; wrightAmi=0.2; wleft= round(0.5*RRst*Fs); wright= round(1.2*RRst*Fs); wleftc= round(0.15*RRst*Fs); wrightc= round(0.15*RRst*Fs); isai=1; % index of first sample used in inizialization fsai=min(length(vadx),round(max(4*RRci, lenci))); % index of last sample used in inizialization w2=fix(2*RRci); % length of window containing at least one QRS mD2=meanMaxSc(vadx(isai:fsai), w2, 0.5,0.5); % compute the average of maximum derivatives on windows of 2*RRci % (0.5% of minima and 0.5% of maxima are discarded) meaD=mD2; th=pth*meaD; % threshold on derivative % --- choose derivative signum for fiducial QRS pointer [minD, maxD] =mimaxsc(vdx(isai:fsai),1,1); if(fb) if(minD < -maxD*1.1), vsdx=-vdx; else vsdx=vdx; end % backward else if(maxD > -minD*1.1), vsdx=vdx; else vsdx=-vdx; end % forward end j=1; RRsm=RRsi; RRcm=RRsm*Fs; RRest=RRcm; QRSrefj=1; while QRSrefj<=length(vdx) % main loop on derivative samples QRSrefjlmi=max(QRSrefj-wleft,1); QRSrefjrma=min(QRSrefj+wright,length(vsdx)); if(j>1) %--- weightw=ones(wleft+wright+1,1); for k=wrightc:wright if(weightw(wleft+k)-0.02>wrightAmi), weightw(wleft+k+1)= weightw(wleft+k)- 0.002; else weightw(wleft+k+1)= weightw(wleft+k); end end for k=wleftc:wleft if(weightw(wleft-k+2)-0.02>wleftAmi), weightw(wleft-k+1)= weightw(wleft-k+2)- 0.002; else weightw(wleft-k+1)= weightw(wleft-k+2); end end weightw=weightw(1:QRSrefjrma-QRSrefjlmi+1); %---- [maxs,imaxs]=max(weightw.*vsdx(QRSrefjlmi: QRSrefjrma)); % max of derivative else %QRSrefjrma=min(QRSrefj+round(RRcm),length(vsdx)); weightw=ones(wleft+wright+1,1); for k=wrightc:wright if(weightw(wleft+k)-0.02>wrightAmi), weightw(wleft+k+1)= weightw(wleft+k)- 0.002; else weightw(wleft+k+1)= weightw(wleft+k); end end weightw=weightw(1:QRSrefjrma-QRSrefjlmi+1); [maxs,imaxs]=max(weightw.*vsdx(QRSrefjlmi: QRSrefjrma)); % max of derivative end if(maxs>th*weightw(imaxs)) % comparison of max of derivative with weighted threshold QRSrefj=QRSrefjlmi-1+imaxs; % position of the detected QRS QRSref(j)=QRSrefj; % QRS pointer saving if(j>1) RRcj=QRSref(j)-QRSref(j-1); RRcmp=RRcm; RRczj=RRcj-RRcmp; RRcVz(j,1)=RRczj; RRcm=RRcmp+ 0.05* sign(RRczj)*min(abs(RRczj), 0.05*RRcmp); RRsm=RRcm/Fs; if(RRsmRRst*2.5), RRsm=RRst; RRcm=RRsm*Fs; end % sqRRsm=sqrt(RRsm); % QTlen=0.420*sqRRsm; % maskQT=round((0.07+pmQT*QTlen)*Fs); % nsp=round(0.15*sqRRsm*Fs); % nsd=round(0.078*sqRRsm*Fs); wleft = round(0.3*RRsm*Fs); wright = round(0.8*RRsm*Fs); % wleftc= round(0.15*RRsm*Fs); wrightc= round(0.15*RRsm*Fs); wleftc= round(0.02*RRsm*Fs); wrightc= round(0.02*RRsm*Fs); RRest=RRcm; if(j==m+1) RRcVzj=RRcVz(2:m+1); a = lpc(RRcVzj,m); w=-a(end:-1:2)'; % initializing predictive filter weigths RRczest=w'*RRcVzj; % zero mean estimated RR value RRest=RRcmp+RRczest; % estimated RR value sz2=RRcVzj'*RRcVzj/m; % initializing average power %RRest = filter([0 -a(2:end)],1,RRcVzj); elseif(j>m+1) sz2 = sz2 + alp*sign(RRczj*RRczj-sz2)*min(RRczj*RRczj-sz2, sz2); % average power updating cp=0.01*sz2; er=RRczj-RRczest; % predictive error RRcVzj=RRcVz(j-m+1:j); if(er*er < 0.5*sz2) w = w + (2*mu/(cp+RRcVzj'*RRcVzj))*er*RRcVzj; % weigth updating by LMS algorithm else w=0.97*w; end RRczest=w'*RRcVzj; % zero mean estimated RR value if(abs(RRczest)>0.03*RRcmp) RRczest=sign(RRczest)*0.03*RRcmp; end RRest=RRcmp+RRczest; % estimated RR value end end QRSrefj=QRSrefj+round(RRest); % estimated next QRS position j=j+1; % increasing the index of qrs pointer vector else QRSrefj=QRSrefjlmi+imaxs+wleft; end end if(j>1) QRSref=QRSref(1:j-1); else QRSref=[]; end end %== function ================================================================ %