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Abstract

Detection  of  Atrial  fibrillation,  the  most  common
cardiac  arrhythmia,  is  a  huge challenge for  engineers.
The databases available online are not sufficient to create
reliable algorithms.  Due to Physionet 2017 Challenge,
researchers have an opportunity to create and benchmark
their algorithms on relatively big dataset, annotated with
recordings from many different patients. 

Presented system is  an ensemble made of  2 models,
that  try  to  complement  each  other  weaknesses.  First
model  is  sequential  Recurrent  Neural  Network  (RNN)
classifier,  that  is  fed  by  lengths  of  intervals  between
following R peaks.  Achieved probabilities for each class
are combined with hand-designed features  and used as
an  input  for  Gradient  Boosting  Machine  (GBM)
classifier.

36 features were designed in attempt to comprehend
entire variability  of  ECG signals.  They  can  be  divided
into 5 categories:  statistical  features,  QRS morphology
features,  RR-interval  features,  noise  features,  and
frequency-based features.

1. Introduction

Atrial  Fibrillation  (AF)  is  one  of  the  most  common
cardiac  arrythmia.  It  occurs  in  1-2%  of  the  general
population, and this number will likely triple in the next
30-50  years  [1].  AF can  be  easily  mistaken  with  other
arrythmias, or omitted, because of its episodic occurance.

Throughout the years, considerable progress has been
made in the automatic detection of AF. However, current
methods are not promising. Algorithms that can be found
in literature are usually tested on clean data, not properly
seperated from the training set, based on small amount of
patients. 

Physionet Challenge 2017 [2] has given an opportunity
for  scientific  community  to  improve  AF  detection,  by
publishing dataset of short one-lead records, containing of
more  than  8528  training  examples.  Such  dataset  can
satisfy previous limitations. Presented work is an attempt
of  creating  reliable,  patient-independent,  resistant  for

other arrythmias system.
Related  work  introduced  various  algorithms  for

predicting  disease  and  detecting  different  types  of
arrhythmia. AF symptoms and though analysis could be
basically  divided  into  two  categories:  based  on  atrial
activity or ventricular response. AF detectors that could
combine  both  features  could  provide  an  enhanced
performance.  Published  methods  include  approaches
based on machine learning [3, 4].

The paper is organized as follows: Section 2 describes
feature extraction, Section 3 explains briefly the theory
behind  the  clasifiers,  Sections  4  is  the  explenation  of
trainig  approach,  cross-validation  techniques  and  the
configurations of proposed models. Section 5 presents the
results and concludes the paper.

2. Features extraction

One of  the  most  important  components  of  proposed
solution are features designed by the author. Overall, 36
features were obtained. They can be split in 3 categories:
the inter-beat timing (‘RR intervals’) features, statistical
features,  frequency  features,  morphological  features,
noise features. The number of designed features in each
category is respectively 8, 3, 5, 4, 16, 2.

2.1. Preprocessing and beat detection

To  remove  baseline  wandering  and  high-frequency
noise,  Butterworth  3rd-order  filtering  was  performed,
with  bandpass  frequencies  between  1  and  25  Hz.  The
frequencies were chosen based on later cross-validation.

After frequencies removal, it  was necessary to detect
R-peaks,  in  order  to  calculate  ventricular  response
features. Algorithm described in [5] was used. It consists
of novel nonlinear transformation of ECG signal, based
on  Shannon  energy  tresholding,  and  peak-finding
strategy, based on the first-order Gaussian differentiator.
On a popular benchmark, MIT-BIH arrhythmia database,
it  achieves  an  average  sensitivity  of  99.94%  and  a
positive predictivity of 99.96%, which is a competetive
score.
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2.2. Statistical features

First  three  feaures  are  simple  statistcal  measures,
namely  variance,  skewness,  and  kurtosis,  of  ECG
samples. Distribution of samples may vary depending on
heart activity. Satistical measures are length-independent.
The inspiration for extracting statistical  measures is the
fact,  that  they  are  often  meaningful  in  EEG automatic
analysis.

2.4. Frequency-based features

Frequency features, or time-frequency features of ECG
signal,  are common in most work containing automatic
ECG analysis.  In  the presented  paper,  the periodogram
power spectral density (PSD) is calculated.

PSD is calculated using Fast Fourier Transform (FFT).
After the transformation, energy within a specific range
(band)  is  obtained.  The  chosen  bands  are  between  5
frequencies: 0.1, 6, 12, 20, 30 Hz. 

Another 5 frequency-related features are energy ratios
between  previously  filtered  signal,  and  another
Butterworth bandpass filtration, in ranges: 1-6, 1-10, 8-
20, 1-8, 12-25.

2.5 Morphological features

Morphological  features  are QRS shape factors.  Each
found  R-peak  is  taken  with  a  several  neighboring
samples, and the shape factor is calculated. Shape factors
for samples in fragment s, from sample 0 to N, are:

- surface area, which is the sum of absolute values of a
given fragment:

surf =∑
n=0

N

(|s (n )|)                                          (2.1)

-  malinowska  coefficient  -  ratio  of  surface  area  to
circumference [8]:

malin=

∑
n=0

N

(|s (n )|)

∑
n=1

N

(|s (n ) − s (n−1 )|)
                   (2.2)

- the number of samples, which velocity is higher than
40 percent of maximum velocity,

- number of positive samples.

After calculating shape factors for each found R peak,
maximum and mean value of factors are taken as a final
features.

Each  feature  is  obtained  using  2  different  window
lengths: 50 and 60 ms. Finally, 16 morphological features
are calculated.

2.6 RR-based features

There  are  8  RR-based  features  derived.  Let  RR-
interval be the difference between two succesive R-peaks,
standarized to have 0 mean and unit variance, RR_1 and
RR_2 intervals be the difference between two succesive
RR and RR_1. Then the features are:

- correlation of RR intervals on Lorenz plot,
- variance of RR,
- variance of RR_1,
- variance of RR_2,
-  sample  entropy  of  RR with  tolerance  equal  to  10

percent  of  RR  standard  deviation,  with  2  sequential
points,

- Shannon entropy of RR,
- Shannon entropy of absolute values of RR_1.

2.7. Noise features

Noise  features  were  designed  to  emphasize  signals
labeld as too noisy to classify. They contain of:

-  number  of  R-peaks  found  by  the  QRS  detection
algorithm, divided by length of a given example,

- mean Sgnal to Noise Ratio (SNR) of detected QRS
complexes.  SNR is  defined  as  the  ratio  of  Root  Mean
Square (RMS) of 80 ms area around R-peak, to the 80 ms
area that starts 120 ms before detected peak.

3. Classifiers

3.1. Gradient Boosting Machine

Gradient  Boosting  Machines  (GBM)  [6]  is  a  very
powerful  algorithm,  with  excelent  open-source
implementation named XGBoost.

GBM is a technique that creates prediction model in
the  form of  an  ensemble,  that  is  boosting  many  weak
predictive models into a strong one. With each iteration of
the algorithm, models are trained on weighted samples,
which are increased or decreased, dependent on corect or
wrong predictions from previous iteration.

At each iteration m, new estimator h(x) is added to the
model  F(x).  To  find  h,  the  gradient  boosting  solution
starts with a perfect observation 

Fm+1 (x )=Fm ( x )+h (x )= y              (3.1)

which is equivalent to 
h ( x )= y − Fm ( x )                                          (3.2)

Gradient boosting is fitting h to the residual of the right
equation. This idea is generalized to another loss funcions
and lets gradient descent algorithm minimalize the output
error over the following iterations.
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In the presented work only decision trees were used as
a model in GBM. Limit has been set to 420 trees. Other
parameters are:

- max_depth: 7,
- eta: 0.04,
- max_depth: 7,
- subsample: 0.8,
- min_child_weight: 0.5,
- max_delta_step: 7,
- gamma: 2,
- lambda: 10,
- colsample_bytree: 0.5.

3.2. Recurrent Neural Networks

ECG is unstructured time series, with huge variability
between  succesive  heart  evolutions.  Recurrent  Neural
Networks (RNN) have an ability to process information
from previous iterations to the current step, so they can
model  phenomenon  over  time.  Carrying  the  memory
forward can be described mathematically as:

ht=∂ (W x t+U ht −1 )                                     (3.3)

The hidden layer state h at time step t is a function of
current time step input and the output of previous hidden
layer state.  W and  U are weigth matrices, and  ∂ is a
nonlinear function.

4. Training approach

4.1.  Cross-validation

The dataset contains of 4 classes: 'N' – normal ECG,
'A'  –  atrial  fibrillation  examples,  'O'  –  all  other
arrhythmias, and '~' - too noisy to classify.

Each recording lasts between 9 and 60 seconds. The
data number in each class is highly unbalanced, which is
respectively 5154, 771, 2557, and 46.

It is hard to build a machine learning system on such
unbalanced  dataset,  because  high  bias  occurs  for  the
classes with small number of examples. 

Considering the above, author decided to use 10-fold
cross-validation, with stratification in terms of inter-class
proportion. In each fold, approximately 10% of each class
examples is always present in validation set.

4.2.  Model configurations

A  several  configurations  of  previously  described
features  and  clasifiers  were  used.   Let  them be  named
with indexes from 1 to 4:

Model  1:  RR intervals  fed to  2 hidden layer  LSTM
network with 0.9 dropout and Adam optimalizer. 

Model 2: GBM trained on all designed features

Model 3: GBM trained on all designed features,  and
probablilities for each class  from Model 1.

Model  4:  First  stage  -  hand-crafted  tresholds
containing  noise  fatures,  that  can  find  “~”  examples,
second  stage  -  GBM  trained  on  all  designed  features
despite of noise features, without “~” examples.

5. Results and summary

The  evaluation  metric  for  the  competition  is  the
standard F1 score calculated for every class, but averaged
arithmetically over 3 classes: 'N', 'A', 'O'.

The distribution of test set  is not known. It is worth
nothing,  that  according  to  the  metric,  class  '~'  has  the
lowest impact on the results. 

Figure 1: Architecture of Model 3.

Table 1. Local cross-validation scores comparison for the
developed models.

Model F1-score
Model 1 0.581
Model 2 0.792
Model 3 0.793
Model 4 0.791

   Although Model 3 gave a slightly better results than
Model  2  and  Model  4,  it  was  the  most  complicated
solution,  and  the  gain  was  negligible.  Model  3  wasn't
eventually tested on the hidden test data. Table 2 shows
the results of Model 2 and Model 4 tested on the hidden
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test dataset:

 Table 2. Hidden test subset scores, according to Pysionet
Challenge 2017 leaderboard before final results.

Model Public F1-score
Model 2 0.79
Model 4 0.79

   Standard deviation for scores (from each fold) of Model
4 was slightly lower than for Model 2, and was equal to
0.011. Eventually Model 3 was chosen as a final solution. 

 Table 3. Final competition results:

Model Public F1-score
First place model [2] 0.83

Model 3 0.81

Table  4.  Presentation  of  precision  and  recall  scores  of
Model 3 for each class, averaged over folds.

Class Precision Recall
N 0.85 0.92
A 0.80 0.71
O 0.75 0.69
~ 0.75 0.56

GBM can show the importance of each feature it was
trained  on,  in  terms  of  relative  contribution  of  the
corresponding  feature  to  the  model.  According  to  that
definition, the ten most important features were: 

- number of R-peak detected,
- Shannon entropy of RR_!,
- variance of RR_2,
- SNR,
- variance of RR,
- correlation of RR intervals on Lorenz plot,
- sample entropy,
- mean of positive samples,
- mean of QRS area surface,
- Shannon entropy of RR.

It is worth nothing that average running time (test set)
is 0.856% of quota, written in python and not optimized,
and the size of the entire entry is around 4 mB,

5.1. Summary

Stacking  the  RR-RNN  probabilities  with  designed
features did not bring the expected improvement. Model 1
is too weak itself. The future direction is to develop this
model,  or  to  create  some  another  classifier,  that  can
understand  well  the unpredictability  of  RR intervals  in

AF. 
It should be pointed that the solution does not overfit

the  training  set.  The  cross-validation  is  reliable,  the
results are high comparing to the winning model, and the
model is very time-efficient.

The performance of Models 2-4 is satisfying on the ‘N’
class.  However,  designed  features  are  not  sufficient  to
differentiate ‘A’ and ‘O’ classes.  Especially arrhythmias
labeled  as  ‘O’  are  misclassified.  It  would  be  highly
desirable  to  design  some  better  feature,  that  could
comprehend  the  variety  of  arrhythmias,  which  can  be
found in ECG signals.
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