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Abstract 

The development of new technology such as wearables 

that record high-quality single channel ECG, provides an 

opportunity for ECG screening in a larger population, 

especially for atrial fibrillation screening. The main goal 

of this study is to develop an automatic classification 

algorithm for normal sinus rhythm (NSR), atrial 

fibrillation (AF), other rhythms (O), and noise from a 

single channel short ECG segment (9-60 seconds). For this 

purpose, signal quality index (SQI) along with dense 

convolutional neural networks was used. Two 

convolutional neural network (CNN) models (main model 

that accepts 15 seconds ECG and secondary model that 

processes 9 seconds shorter ECG) were trained using the 

training data set. If the recording is determined to be of 

low quality by SQI, it is immediately classified as noisy. 

Otherwise, it is transformed to a time-frequency 

representation and classified with the CNN as NSR, AF, O, 

or noise. At the final step, a feature-based post-processing 

algorithm classifies the rhythm as either NSR or O in case 

the CNN model’s discrimination between the two is 

indeterminate.  The best result achieved at the official 

phase of the PhysioNet/CinC challenge on the blind test set 

was 0.80 (F1 for NSR, AF, and O were 0.90, 0.80, and 

0.70, respectively). 

 

 

1. Introduction 

Atrial Fibrillation (AF) is the most common heart 

arrhythmia and its incidence in the United States alone is 

estimated to be 2.7-6.1 million people [1]. As such, AF 

screening using handheld easy-to-use devices has received 

a lot of attention in recent years. The goal of the 2017 

PhysioNet/CinC Challenge is the development of 

algorithms to classify normal sinus rhythm (NSR), AF, 

other rhythm (O), and noisy recordings from a short single-

channel ECG recording (9-60 seconds). In light of the 

successful utilization of deep neural networks for 
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classification of biomedical time series (e.g., heart sounds) 

[2-5], a signal quality index (SQI) technique along with 

dense convolutional neural networks (CNN) trained with 

spectrogram representations were used for classification of 

ECG recordings. 

 

2. Method and Material 

A block diagram of our proposed method is shown in 

Figure 1. Given an ECG recording, first QRS detection 

takes place, followed by signal quality analysis. If the 

recording is judged to be of low quality (further details in 

Section 2.2), it is immediately classified as noisy (noise 

detected by SQI in Figure 1). If the recording quality is 

determined to be reasonable (SQI>0.5), the ECG is 

transformed from a one-dimensional time-series to a time-

frequency representation and consecutively evaluated 

using one of two CNNs, depending on the signal recording 

length. The first model accepts as input 15-second ECG 

segments. However, if the input recording is shorter than 

15 seconds, a secondary model that processes 9-second 

ECG segments is used. 

Both models employ the  Densely Connected 

Convolutional Network (DenseNet) architecture [6]. 

Compared to a standard CNN architecture, each layer 

within a DenseNet architecture concatenates all preceding 

layer feature-maps as input. Figure 2 illustrates this 

concept, where arrows indicate reused feature-maps from 

previous layers in a five-layer dense block. 

Each DenseNet model accepts as input a spectrogram 

segment computed by consecutive Fourier transforms 

(details could be found in section 2.4). The original 

DenseNet architecture was modified to ensure batch 

normalization [7] could be performed row-wise (i.e. 

normalizing over frequency bins per batch). This 

modification resulted in networks that outperformed 

standard channel-wide batch normalization.  

If the input ECG was labelled as NSR or O by the 

DenseNet model, an additional check was performed by a 

post-processing unit (further details in Section 2.5). 
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2.1. Data Splitting and Augmentation 
The training set for the challenge included 8,528 single-

channel ECG recordings (NSR: 5050, AF: 738, other 

rhythm: 2456, and noisy: 284). Details about the challenge 

dataset can be found in [8]. A 5-fold stratified split was 

applied to the 8,528 ECG recordings made available by the 

challenge organizers. Stratified splitting was used to 

maintain class prevalence between the data splits. 

Recordings from four of the splits were used to construct a 

training/validation set (6821 ECG recordings) made up of 

the QRS aligned spectrogram segments. The training set 

included 80% of the above recordings. The other 20% were 

used as a validation set during model training. The 

remaining stratified split, consisting of 1,707 ECG 

recordings, was kept as an in-house test-set for assessing 

algorithm performance, independent from the blind 

challenge test dataset. 

A further 6,312 30-second ECG segments representing 

atrial fibrillation were collected from various sources 

(including ambulatory recordings from Holter monitors) 

and used to augment the training and validation sets. 

Baseline wander was removed from each AF segment and 

was up-sampled from 250 to 300 samples-per-second in 

order to match the sampling rate of the challenge dataset. 

 

2.2. QRS Detection and Signal Quality 

Assessment 

After removing baseline wander using a moving 

average filter, QRS complexes were detected using gqrs 

algorithm, publicly available in WFDB toolbox [9]. After 

aligning by the detected QRS peaks, average template 

matching correlation coefficient [10] with the threshold of 

0.5 was used as SQI to identify noisy data. This measure 

had the highest area under the receiver operating 

characteristic (ROC) curve for discriminating between 

artefacts and arrhythmic ECG [11].  

 

2.3. Spectrogram 

For each recording, a spectrogram was constructed 

using an FFT applied on a moving window with the length 

of 75 samples and overlap of 50%. Segments with the 

length of 15 and 9 seconds were extracted from the 

spectrogram beginning at each of the detected QRS peaks. 

 

 

2.4. Dense Convolutional Neural Networks 

If the quality of ECG recording was reasonable (SQI> 

0.5) by the SQI module, rhythm classification took place 

using a dense convolutional neural network. Recordings 

processed by CNNs were classified as NSR, AF, O, as well 

as noisy. Recall that, at first, an attempt is made to use a 

CNN model that processes 15-second segments. However, 

if the input recording length is not long enough, a 

secondary model that processes 9-second segments is used. 

 

2.4.1. Main and Secondary Models 

Main model: The 15-second model is made up of 3 

dense blocks consisting total of 40 layers. Each layer 

involves applying a convolutional filter, followed by 

ReLU activation and row-wise batch normalization. A 

growth rate of 6 feature-maps was used for each layer. 

Model input dimensions were a single channel of 20 

frequency bins by 375 time segments. The first 20 

frequency bins from the computed spectrogram captures a 

frequency range of up to approximately 50 Hz. In total, the 

model consisted of 262,344 trainable parameters. 

Secondary Model: The architecture used for the 

secondary model was similar to the main model, however, 

a smaller growth rate of 4 feature-maps was used per layer. 

Model input dimensions were a single channel of 20 

frequency bins by 225 time segments, height and width. 

The lower width resulting from the shorter 9-second 

segment size. In total, the secondary model consisted of 

119,458 trainable parameters. 

 
Figure 2. Five layers of a DenseNet block with a growth 

rate of 4 feature-maps per layer (source [6]). 

 

 
 

Figure 1. Block diagram of the proposed algorithm. 
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2.4.2. Model Training 

Both the main and secondary models were trained as 

four class classification models using standard softmax 

cross-entropy loss. Models were typically trained for no 

more than 15 epochs. Once a model was sufficiently 

trained, in-house testing was performed on the left-out 

stratified split, as previously described. Models that 

achieved desirable performance were further trained 

before submission to the challenge server. In particular, the 

full five splits of challenge data were used to train a final 

model, where 95% of the data was used for training and the 

remaining 5% for validation. Final model training did not 

occur from scratch, but rather weights from the previously 

learned model were used to pre-initialize the dense CNN 

for continued training using the updated, full dataset. 

 

2.5. Post Processing 

If the ECG is labelled as NSR or O by the CNN and the 

probability of being NSR and O are close to each other 

(absolute difference between probability of NSR and O < 

0.4), a feature-based post-processing step is performed to 

cast the final decision. For NSR/O post-processing, an 

AdaBoost-abstain classifier  [12] was trained using the 

NSR and O recordings in the in-house training set. Its 

performance was tested on the in-house test set. A total of 

437 features were extracted from five different categories 

to train the model: 

- Signal quality (2 features): average template matching 

correlation coefficient [10] and bSQI [13] based on the 

output of gqrs and Pan-Tompkins [14] QRS detection 

algorithms.  

- Frequency content (10 features): median power across 

nine frequency bands (1-15, 15-30, 30-45, 45-60, 60-75, 

75-90, 90-150, 5-14, and 5-50Hz) as well as ratio of 

power in 5-14Hz band to power in 5-50Hz. The power 

spectrum of the ECG record was estimated using 

discrete-time Fourier transform.  

- Beat to beat interval (11 features): number, minimum, 

maximum, and median of RR intervals, SDNN, 

RMSSD, average heart rate, and different heart rate 

asymmetry measures (PI, GI, SI) 

- ECG-based reconstructed phase space (401 features): 

normalized ECG reconstructed phase space (RPS) was 

created with dimension 2 and delay equal to 4 samples 

[15]. Then, the RPS was divided into small square areas 

(grid of 20×20). Normalized number of points in each 

square was considered a feature. In addition, spatial 

filling index was calculated [16].  

- Poincare section from ECG (13 features): using RPS 

reconstructed from ECG, as described above, 13 

different features from Poincare section with unity line 

were extracted. More details about the method and 

features can be found in [15, 17].  

2.6. Algorithm Evaluation 

Performance of the algorithm was evaluated using an 

average of three F1 values for classification of NSR, AF, 

and O (F1n, F1a, and F1o, respectively). In-house test set 

was used for algorithm evaluation independent from the 

blind challenge test dataset. Also, performance was tested 

on a random subset of blind hidden test during official 

phase and final score was created using the whole blind test 

set. 

 

3. Results 

Area under the ROC curve for AdaBoost–abstain classifier 

in NSR/O post-processing step was 0.86 on the in-house 

test set. Only 58 features were selected by the classifier, the 

top 10 were from beat to beat interval (n=5), ECG-based 

reconstructed phase space (n=2), and Poincare section 

from ECG (n=3). 

The best result achieved of the proposed algorithm at the 

official phase of the challenge on the in-house test set was 

0.82 (F1 for NSR, AF, and other rhythm were 0.91, 0.80, 

and 0.76, respectively). Final result on the whole challenge 

blind test dataset was 0.80 (F1 for NSR, AF, and other 

rhythm were 0.90, 0.80, and 0.70, respectively). 

 

Table 1. Algorithm performance on in-house test set and 

whole blind test set. F1n, F1a, and F1o are F1 values for 

classification of NSR, AF, and O. 

 
F1n F1a F1o F1 

Dataset 

In-house 

test set 
0.91 0.80 0.76 0.82 

Whole 

blind test 

set 

0.90 0.80 0.70 0.80 

 

4. Discussion 

This work led to the development and evaluation of 

several model types, not all of which are fully described in 

this paper. Here we discuss some of the findings of this 

effort, as well as alternative approaches investigated 

during the CinC challenge. 

 One of the findings of this work was that for CNNs 

that process spectrograms as input, row-wise batch 

normalization (i.e. normalizing over frequency bins 

per batch) is preferable to a typical channel-wide 

application of batch normalization. This modification 

to our CNN models consistently resulted in 

considerable performance gains. 

 Significant experimentation was performed using so 

called wide and deep networks [18], where activations 

from later convolutional layers (deep features) are 

combined with variables that capture information 
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using domain knowledge (wide features). The wide 

features that were considered included well-known 

HRV measurements (e.g. SDNN, RMSSD, pNN50), 

entropy measure (e.g. SampleEn) and morphological 

features (e.g. P-wave duration, PR interval, QT-

interval). However, the addition of wide features 

typically resulted in approximately a 2% drop in 

overall performance. It is possible that additional wide 

features, not presently included within our 

experimentation, would result in performance 

improvement. 

 Lastly, the model presented here achieved its current 

performance using only time-frequency inputs 

encoded as spectrograms. A further model type was 

tested that accepted time-frequency inputs (as 

described), as well as a parallel CNN architecture that 

accepted the raw ECG waveform as input to 

automatically capture morphological information. 

These two parallel models were combined to make a 

final classification. This dual network that captured 

frequency and morphology information showed 

promise on our in-house test set results – producing F1 

scores that outperformed all other network 

architectures that were evaluated. However, these 

networks resulted in computational requirements that 

were beyond the restrictions imposed by the challenge 

server, hence we were not able to assess their overall 

performance on the hidden challenge test dataset. 

 

5. Conclusion 

In this article, a SQI technique was combined with 

dense convolutional neural networks following by a post-

processing feature-based classifier to find the best method 

for distinguishing atrial fibrillation from normal sinus 

rhythm, other rhythms, and noise. The promising 

performance of the algorithm makes us hopeful that with 

further enhancement this technique may be suitable for 

practical clinical use. 

 

References 

[1] C. T. January, L. S. Wann, J. S. Alpert, H. Calkins, J. C. 

Cleveland, J. E. Cigarroa, et al., "2014 AHA/ACC/HRS guideline 

for the management of patients with atrial fibrillation," 

Circulation, p. CIR. 0000000000000041, 2014. 

[2] C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, "Classifier 

ensemble for detection of abnormal heart sounds," 2016. 

[3] J. Rubin, R. Abreu, A. Ganguli, S. Nelaturi, I. Matei, and K. 

Sricharan, "Recognizing Abnormal Heart Sounds Using Deep 

Learning," arXiv preprint arXiv:1707.04642, 2017. 

[4] J. Rubin, R. Abreu, A. Ganguli, S. Nelaturi, I. Matei, and K. 

Sricharan, "Classifying heart sound recordings using deep 

convolutional neural networks and mel-frequency cepstral 

coefficients," in Computing in Cardiology Conference (CinC), 

2016, 2016, pp. 813-816. 

[5] C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, "Ensemble 

of feature-based and deep learning-based classifiers for detection 

of abnormal heart sounds," in Computing in Cardiology 

Conference (CinC), 2016, 2016, pp. 621-624. 

[6] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, 

"Densely connected convolutional networks," arXiv preprint 

arXiv:1608.06993, 2016. 

[7] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating 

deep network training by reducing internal covariate shift," in 

International Conference on Machine Learning, 2015, pp. 448-

456. 

[8] G. Clifford, C. Liu, B. Moody, I. Silva, Q. Li, A. Johnson, et 

al., "AF Classification from a Short Single Lead ECG Recording: 

the PhysioNet Computing in Cardiology Challenge 2017," 

presented at the Computing in Cardiology Rennes-France, 2017. 

[9] I. Silva and G. B. Moody, "An open-source toolbox for 

analysing and processing physionet databases in matlab and 

octave," Journal of open research software, vol. 2, 2014. 

[10] C. Orphanidou, T. Bonnici, P. Charlton, D. Clifton, D. 

Vallance, and L. Tarassenko, "Signal-quality indices for the 

electrocardiogram and photoplethysmogram: derivation and 

applications to wireless monitoring," IEEE journal of biomedical 

and health informatics, vol. 19, pp. 832-838, 2015. 

[11] C. Daluwatte, L. Johannesen, L. Galeotti, J. Vicente, D. 

Strauss, and C. Scully, "Assessing ECG signal quality indices to 

discriminate ECGs with artefacts from pathologically different 

arrhythmic ECGs," Physiological measurement, vol. 37, p. 1370, 

2016. 

[12] B. Conroy, L. Eshelman, C. Potes, and M. Xu-Wilson, "A 

dynamic ensemble approach to robust classification in the 

presence of missing data," Machine Learning, vol. 102, pp. 443-

463, 2016. 

[13] J. Behar, J. Oster, Q. Li, and G. D. Clifford, "ECG signal 

quality during arrhythmia and its application to false alarm 

reduction," IEEE transactions on biomedical engineering, vol. 

60, pp. 1660-1666, 2013. 

[14] J. Pan and W. J. Tompkins, "A real-time QRS detection 

algorithm," IEEE transactions on biomedical engineering, pp. 

230-236, 1985. 

[15] S. Parvaneh, M. R. Hashemi Golpayegani, M. Firoozabadi, 

and M. Haghjoo, "Predicting the spontaneous termination of 

atrial fibrillation based on Poincare section in the 

electrocardiogram phase space," Proceedings of the Institution of 

Mechanical Engineers, Part H: Journal of Engineering in 

Medicine, vol. 226, pp. 3-20, 2012. 

[16] O. Faust, R. Acharya, S. Krishnan, and L. C. Min, "Analysis 

of cardiac signals using spatial filling index and time-frequency 

domain," BioMedical Engineering OnLine, vol. 3, p. 30, 2004. 

[17] S. Parvaneh, M. R. H. Golpaygani, M. Firoozabadi, and M. 

Haghjoo, "Analysis of Ecg In Phase Space for the Prediction of 

Spontaneous Atrial Fibrillation Termination," Journal of 

electrocardiology, vol. 49, pp. 936-937, 2016. 

[18] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. 

Aradhye, et al., "Wide & deep learning for recommender 

systems," in Proceedings of the 1st Workshop on Deep Learning 

for Recommender Systems, 2016, pp. 7-10. 

 

Address for correspondence. 

Jonathan Rubin / Saman Parvaneh 

2 Canal Park, 3rd floor, Cambridge, MA 02141. 

jonathan.rubin@philips.com / saman.parvaneh@philips.com 

Page 4 

  


	160-246



