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Abstract

As part of the PhysioNet/Computing in Cardiology
Challenge 2017, this work focuses on the classification
of a single channel short electrocardiogram (ECG) sig-
nal into normal, atrial fibrillation (AF), others and noise
classes. To this end, we propose a shallow convolutional
neural network architecture which learns suitable features
pertaining to each class while eliminating the need to ex-
tract the traditionally used ad hoc features. In particular,
we first developed a robust R-peak detector and stacked
sequence of fixed number of detected beats with R-peaks
aligned. These stack of beats corresponding to a segment
of ECG record are classified into one of the four afore-
mentioned classes. To improve the robustness, multiple
classifiers were trained to classify these segments. Over-
all record classification was then generated using an vot-
ing scheme from the classification results of individual seg-
ments. Our best submission result during the official phase
has a score of 71% with F1 scores of 86%, 73% and 56%
respectively for normal, AF and other classes respectively.

1. Introduction

Cardiovascular diseases (CVDs) are a leading cause of
death worldwide [1]. An indispensable tool in diagnosing
and monitoring CVDs is electrocardiogram (ECG). In cer-
tain scenarios, ECG from the patient is continuously mon-
itored to detect various arrhythmic conditions. In partic-
ular, atrial fibrillation (AF) is the most common cardiac
arrhythmia with a prevalence of 1-2% in general popula-
tion, and could result in a catastrophe when unattended.
In this work, we propose to detect the incidence of AF as
part of the Physionet/CinC 2017 challenge. Specifically
our goal is to classify each of the recordings in the chal-
lenge database into one of the four classes, namely normal,
AF, other and noise.

Electrocardiographic presentation of AF is character-
ized by irregular RR intervals and absence of P-waves.
Based on the above characteristics various algorithms have
been developed for detecting AF from the ECG waveform.
Such detection approaches include Poincaré plot analysis,
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Lorenz plot analysis and analysis based on the histogram
of RR intervals [2-4]. In the context of P-wave fibril-
lation detection, echo state neural network and wavelet-
based methods have been reported [5, 6]. There have also
been attempts based on modeling a combination of features
such as RR interval irregularity, PR interval variability P
wave morphology, P-wave absence, f-wave presence, and
noise level [7, 8]. Although such algorithms have reported
high classification performance, majority of them remain
unreliable to be used in practice. In generally, most of the
classification algorithms used a fixed set of hand-crafted
features in the classifier design. However, ECG signals
with rhythm changing from normal to AF or otherwise has
high variation, and such generic features may not be ade-
quate to fully represent the underlying characteristic of the
signal. In addition, many non-AF rhythms exhibit irregular
RR intervals similar to AF. Indeed, with the broad variety
of rhythms makes the detection of AF from a single short
lead of ECG signal challenging.

Against this backdrop, we propose a shallow convolu-
tional neural network (CNN) architecture that learns suit-
able features from training data to achieve the desired clas-
sification task. Specifically, from the training data and la-
bels provided in the challenge database, we first detect the
location of R-peaks and stack a fixed number of beats with
their R-peaks aligned. Such beat stack vectors correspond-
ing to multiple overlapping segments of ECG record and
the corresponding record label are used to train the pro-
posed CNN. Intuitively, our training would compare and
combine multiple adjacent beats appropriately and learns
suitable features to discriminate four classes, providing an
advantage. Now, given a test record, we form stacked beat
vectors corresponding to multiple overlapping segments of
ECG record and assign it to one of the four classes. To im-
prove robustness, we trained multiple classifiers to achieve
segment classification. Finally, the sequence label for the
beats are mapped to signal classification based on a voting
scheme or averaging operation.

The rest of the paper is organized as follows. In Section
2 we present the methodology. In Section 3 we present the
proposed solution. Results are presented in Section 4. Fi-
nally in Section 5 we conclude the paper with a discussion.
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2. Methodology

In this section, we first present a mathematical formal-
ism for ECG classification, then present the architecture of
the proposed CNN based classifier.

2.1. Formalism

The desired ECG signal classification task takes an ECG
signal X = [z, 23 ... 2] as an input, and outputs a labels
O;, wherei € {N, A, O, ~}, corresponding to normal, AF,
others and noise classes respectively. Our goal is to find
the labels such that the Fl-score! for each class and the
overall F1 measure, which is an average of the F1 scores
of normal, AF and other class are maximized.

2.2. Convolutional neural networks

In this paper, we proposed an ECG classification ap-
proach based on convolutional neural networks (CNNs).
CNNs add convolution layers below the input layer and
above the hidden and output layers of usual neural net-
works [9]. CNN architecture used in the present work is
illustrated in Figure 1 with a single convolution layer fol-
lowed by the the fully connected network to output layer.
Input of the proposed CNN takes n stacked beat vectors
of length m. Convolutional layer will have £ filters (or
kernels) of size ¢ X n, where ¢ is smaller than the length
of the input vector. Each filter is convolved with the in-
put, and is followed by nonlinear activation (sigmoid) to
produce k feature maps of size (m — g + 1) x 1. The out-
put from multiple filters are then stacked together to form
a single feature vector. Following the convolution layer
we used a single fully connected layer with softmax acti-
vation. The densely connected layers are identical to the
layers in a standard multilayer neural network. We opti-
mized the weights of the convolution and fully connected
layers using the stochastic gradient descent method with
cross entropy cost function [10].

For the present classification task, we denote the output
of the final layer to be Py, P4, Po and P.. We interpret
P; as the probability of occurrence of each class (i.e., Py +
P4y + Po + P. = 1), and assign the input vector to the
class that has maximum probability of occurrence.

3. Proposed solution

The proposed solution for the desired classification task
is is depicted in Figure 2. We now elaborate on the major
blocks of the proposed solution.

1F1-score for class i is twice the ratio of true positives of class i to the
sum of total samples in class ¢ and the samples labeled as class 7.
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Figure 1. Convolutional neural network architecture.

3.1. Preprocessing

Given a test signal, we first resample the signal to
300Hz, then remove the baseline wander, and normalize
the signal to lie between [-1, 1]. Specifically, to remove
baseline wander, we pass the signal through a cascade of
two median filters of window sizes 200ms and 600ms re-
spectively to obtain the baseline wander signal, which is
then subtracted from the original signal to obtain the base-
line corrected signal. We normalize the baseline corrected
signal with the maximum value in the non overlapping
window of 3 sec.

3.2. R-peak detection

In this study, we proposed a robust R-peak detector
based on 1D CNNs. The CNN architecture used for R-
peak detection differs from the architecture shown in Fig-
ure 1 only at the input and output layers. Specifically, the
input is a signal vector of 300 samples corresponding to
the chunk of ECG signal while output is a binary decision
indicating 1 for an R-peak and O otherwise. To train the
proposed CNN, we used MIT-BIH arrhythmia database,
containing 48 recording of half-hour duration with each
R-peak location and its type were annotated by two in-
dependent cardiologists. Specifically, our training data
include multiple overlapping beat vectors from a given
record whose label is marked as 1 if an R-peak annota-
tor lies in a narrow (around 150 ms) neighborhood in the
middle of the signal vector.

In the proposed CNN architecture for R-peak detector,
we used a single convolution layer with 3 filters of length
30 followed by fully connected layer to output layer. As
alluded earlier, the proposed CNN learns suitable features
to perform the desired classification task (here detecting
whether the given segment has an R-peak). The labels
generated for each of the segments are further processed
to detect the R-peak locations. Figure 3 illustrates the R-
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Figure 2. Proposed end-to-end classification system.
1 15 . 2
(0] 1 0
Sos
£ L ) ° -
-4
<0 Ar 0 ). /L,/J -1 6
0 1000 2000 3000 O 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
1 T T T T T T T T 1 1 1 [ [ DL 0 l

—

Normalized
amplitude
o
[$)]

()

AJL/U A4l il L m

0 1000 2000 3000 0 1000 2000
Samples Samples

() (b)

. M S N S S R R | .
3000 O 1000 2000 3000 O 1000 2000 3000
Samples Samples
© (d)

Figure 3. Original signal (top row) and the corresponding baseline wander removed and normalized signal along with
R-peak detections for (a) normal; (b) AF; (c) other (d) noise signals (bottom row).

peak detected for various classes of signals considered in
the present work.

3.3. Beat-stack classification

Using the proposed CNN based R-peak detector, we es-
timate the location of R-peaks. Then, for each detected R-
peak, we collected 350 samples before R-peak value and
350 samples after R-peak value, to form a beat vector of
length 701 samples. Now, 8 consecutive beat vectors are
stacked together to form a beat-stack. Note that multi-
ple beat-stacks can be formed for a given signal and are
given as input to the classifier. Figure 4 (top row) illus-
trates the stacked beat vectors corresponding to normal,
AF and other class signals. Clearly, the center R-peaks
are aligned while the previous R-peak and next R-peaks
are not aligned across multiple beats due to irregularity in
RR intervals, which is a characteristic of AF signals. Also
notice the stacked beat vector are non overlapping due to
differing morphology of the beats corresponding to other
class signal. Such stacked beat vectors are then passed as
input to convolution layer to learn the discriminative fea-
tures that aid the desired classification goal.

We used a single convolution layer followed by fully
connected layer to output with softmax activation. We used
10 filter kernels with length 100. The feature vector gener-
ated after convolving one of the filter with normal, AF and
other signals is shown in Figure 4 (bottom row). Clearly
R-peak misalignment for various signals is captured which
is an indicator of regularity of RR interval. To increase

the robustness of the classifier, we trained four indepen-
dent classifiers and all the beat-stacks corresponding to a
signal are assigned with four labels corresponding to four
classifiers.

3.4. Signal classification

Finally, multiple labels corresponding to multiple beat-
stacks of the given signal are mapped to signal label based
on unanimous voting and averaging operation. In the for-
mer, beat-stacks of the signal which are classified into a
single class by all the classifiers are considered and rest
of the beat-stacks are discarded. Now, for a given signal,
whichever class has a larger number of beat-stacks is out-
put as the signal-level prediction. If none of the beat-stacks
are labeled to single class by all the classifiers, we compute
the record classification probability for each classifier, de-
fined as the ratio of numbers of beat-stacks corresponding
to each class to total number of beat-stacks. Then the sig-
nal classification probability is averaged across all the clas-
sifiers and class with highest value is assigned as record
level prediction.

4. Results

Using the proposed shallow CNN architecture, we
achieved an overall Fl-score 71%. A detailed listing of
Fl-scores for each of the normal AF and other class are
presented in Table 1. Considering the computational com-
plexity, our submitted entry on an average uses less than
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Figure 4. Stacked beat vectors (top row) and output of convolution layer (bottom row) for the corresponding signal of (a)
normal (b) AF and (c) other class.

Method | F1 score
Normal 0.86
AF 0.73
Other 0.56
Overall 0.71

(3]

(4]

Table 1. Classification performance

25% of the allocated quota on the challenge sandbox en-
vironment making it suitable for resource constrained sce-
narios.

5. Discussion

In this study, we proposed a CNN based solution to the
2017 PhysioNet/CinC Challenge. We optimized weights
of the convolutional layer to extract the features specific
to the class that maximizes the underlying classifier per-
formance. Strength of our solution lies at learning the
discriminative features for multiple classes. Further the
low-complexity execution makes it to be readily useful for
real-time applications. The proposed method yields an F1-
score of 86% and 73% respectively for normal and atrial
fibrillation signals. However, it achieves only 56% F1-
score for others class. Additional work is necessary to
improve the predictive power of other class which could
penitentially improve the overall F1-score.
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