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Abstract

Introduction: Atrial fibrillation (AF) is the most com-
mon sustained cardiac arrhythmia. Its prevalence is 1-
2% of the general population and it is associated with in-
creased risk of mortality and morbidity.

Methods: The AliveCor mobile electrocardiogram
(ECG) device was used to collect data. The Physionet
Challenge aimed to create an intelligent algorithm for au-
tomated rhythm and quality classification. A database of
8528 single lead ECG was used for training and a closed
database of 3658 ECG recordings was used for testing the
participants algorithms on the Challenge server. The RR
interval time-series was first estimated using a R-peak de-
tector. Signal quality was estimated on a second-by-second
basis and the continuous sub-segment with the highest
quality was selected for further analysis. A number of
features were estimated: heart rate variability (time do-
main based, fragmentation, coefficient of sample entropy
etc.), ECG morphology (ORS length, QT interval etc.) and
the presence of ectopic beats. The features were used to
train support vector machine classifiers in a one-vs.-rest
approach.

Results: For the final score of the challenge we obtained
an overall F1 measure on the test set of 0.80.

Conclusion: The feature based machine learning ap-
proach showed high performance in distinguishing be-
tween the different rhythms represented in the Challenge.
This opens the horizon for computer automated interpre-
tation of single lead mobile ECG.

1. Introduction

Atrial fibrillation (AF) is a cardiac pathology charac-
terised by a chaotic contraction of the atrium, and is cur-
rently the most common cardiac thythm disorder (1)). The
prevalence of AF roughly doubles with each advancing
decade of age, from 0.5% at age 50-59 years to almost
9% at age 80-90 years (2). It is estimated that 2.3 millions
adults in the US currently suffer from AF and that this fig-
ure will rise to 5.6 millions by 2050, reflecting the ageing
of the population (3). AF is considered as a major cause
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for both mortality and morbidity as it increases the risk of
heart failure, and stroke. AF is currently under-diagnosed,
and is commonly detected only after a patient presents seri-
ous complications such as stroke or heart failure. Medica-
tion can ease symptoms and help preventing serious com-
plications such as a stroke. Electrophysiological surgery
and RF ablations have been shown to be quite effective
treatments for restoring back a normal rhythm (4).

Recent progress in mobile technology (network, com-
putational power, connectivity) makes it possible to de-
velop low-cost, widely available and accurate medical de-
vices. These devices can be used to address the short-
age of healthcare resources in the developing world and
lower the cost of healthcare in developed countries. AF is
an excellent candidate for which the impact of such well-
engineered mobile technology would be high. However,
despite the availability of low-cost medical hardware, the
ability to process data directly on the phone and the avail-
ability of large databases of biosignals there is yet very
little that has been done in creating intelligent algorithms
that could automatically interpret these medical data.

The subject of the Physionet/Computing in Cardiology
challenge 2017 (5) addresses this topic and encourages re-
searchers across the world to develop techniques for the
classification of AF from a short single lead electrocardio-
gram (ECG) recording obtained using a mobile device.

2. Methods

2.1. Data

ECG recordings were collected using the AliveCor de-
vice and made available for the Challenge. An open
database of 8528 single lead ECG and their annotations
were used for training and a closed database of 3658 ECG
recordings was used for testing on the Physionet Challenge
server. Four categories of ECG recordings were present in
the databases: atrial fibrillation (A), normal sinus rhythm
(N), other rhythms (O) and noisy recordings (~).
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2.2.  Preprocessing

The RR interval time-series was first estimated using
three different R-peak detectors, namely: jqrs (), epltd
(7) and gqrs (8). The jqrs detected R-peaks were used as
the reference for RR interval estimation and the morpho-
logical analysis of the ECG. All three detectors were used
to estimate the quality of a given record using bsqi (9). It
has been shown that AF detection accuracy decreases with
a lowered ECG quality (10). In order to deal with tran-
sient noise, the segment of highest quality, defined as being
the longest continuous segment with a minimal “second by
second” bsqi over a given threshold (taken to be 0.92).

2.3. Features

A set features were then extracted form the signal.
These features can be divided in different categories :
(i) signal quality, (ii) predictability of the RR intervals
(15 12), (iii) the ECG morphology (QRS duration, QT
interval etc. (15)), (iv) heart rate variability (time based
measures (13), fragmentation measures (13} [14). Figure 2]
shows the distribution for a subset of the key features used
on the different classes. A list of the subset of the features
extracted is given in Table[T]

In particular, AF specific features can be divided in two
categories: atrial activity based or ventricular based. The
atrial activity based features include the analysis of the
absence of P waves or the presence of f-waves (ratio,
Max freq in Table [T). The ventricular based features are
based on the predictability or the RR intervals (CosEn,
AFE,OrC, IrE, PACe in Table[T).

2.4. Machine learning

For classification we used a cascaded approach. This
approach was chosen because of the large imbalance be-
tween the classes, the N class amounting for example to
almost two thirds of all recordings in the training set. The
features were used to train support vector machine (SVM)
classifiers (16) with a Radial Basis Function (RBF) kernel
in a one-vs.-rest approach. The first classifier was trained
to distinguish between the N class against all other classes
(O, A, ~). The second SVM was trained to distinguish
between A against O and the ~ classes and finally the
last SVM was trained to distinguish between ~ and O.
The classifiers were trained using repeated cross valida-
tion. Random search was performed to determine the SVM
hyperparameters: soft margin constant C' and RBF kernel
hyperparameter . The features were normalised using a
min/max approach and missing values were replaced by a
default constant equal to -1.1, therefore emphasising the
fact that missing values may carry information. The Fea-
ture selection was performed in stages, first the features

were ranked by importance using the approach from (17).
Secondly, a repeated cross-fold validation was performed
with an increasing number of features in order to select the
number of features to use in order to optimise the perfor-
mances of the classifier while limiting the over-fitting.

3. Results

On the training set we obtained (see Table [2)) an overall
F; of 0.83. The F; measures for the different classes were
0.90, 0.83, 0.75 for normal, AF and other respectively. In
phase two, we obtained an overall F; measure on the test
set of 0.80. The F; measures for the different classes were
0.89, 0.82, 0.70 for normal, AF and other respectively. Our
final score evaluated on the whole corrected test set pro-
vided at the end of the challenge was 0.80 which is consis-
tent with our phase 2 results.

4. Discussion

Table [3] contains the average confusion matrix obtained
during repeated cross-fold validation for the entry 3 of
phase 2. In particular, there is a relatively high number
of On (533) and No (376), which explains the relative
low score for i o compared to the scores obtained for the
classification of N and A recordings. A better understand-
ing of the source for these misclassifations should improve
the overall performance.

Figure [I] shows the influence of adding features to the
SVM and the phenomenon of over-fitting (i.e. when train-
ing results are improving whereas validation results are de-
creasing).

An analysis of the ranking indicates that different fea-
tures were selected for each SVM. The top five features for
distinguishing the N class against all other classes were:
min,,, AVNN, PAS, medR and medST. The top five fea-
tures for distinguishing the A class against O and ~ were:
ItE, CosEn, AFE, Fy, median,... The top five features for
distinguishing the ~ class against the O class were: med-
Tamp, PACe, stdP, F; and stdR. In particular, for the A
class, the ventricular features performed better than the
atrial activity based ones. This is because the ventricular
features are more robust to the presence of noise, which
is particularly relevant for the Challenge databases (non-
contact portable ECGs). Figure [2]illustrates the per class
distributions for two of the most relevant features.

5. Conclusion

Overall, the feature-based machine learning approach
showed good performance in distinguishing between the
different rhythms available, with particularly high statis-
tics for the detection of AF recordings.
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Features Definition

bSQI Signal quality of the overall recording (9)

CosEn Coefficient of sample entropy (11}

AFE AFEvidence (12}

OrC Number of points in the bin containing the Origin (12}

IE Irregularity Evidence (12)

PACe PAC Evidence (12}

min,.,. Minimum RR interval

max,.,. Maximal RR interval

median,.,. Median RR interval

nboyttiers RR-interval outliers. An outlier was defined as a sample exceeding 20% of a window average of size
12 beats.

medR Median R-peak amplitude (mV)

stdR Standard deviation of the R-peak amplitude (mV)

medQT Median distance from Q,y, to Ty .

medQT, Median QT interval corrected using the Bazett’s formula

medQT . Median QT interval corrected using the Frederica’s formula

medQT Median QT interval corrected using the Framingham formula

medQTroq Median QT interval corrected using the Hodge formula

medQS Median QRS interval length

stdQS Standard deviation of the QRS intervals

medP Median P-wave length defined as the distance from P,,, to P, ¢

stdP Standard deviation of the P-wave length

medPR Median PR interval defined as the distance from P,,, to Q,,,

stdPR Standard deviation of the PR interval

medPamp Median P-wave amplitude defined as the amplitude of the P-wave computed from P, to the peak
of the P-wave.

medPRseg Median PR segment defined as the distance from P s ¢ to Q.

medT Median T-wave length defined as the distance from T, to T,y

stdT Standard deviation of the T-wave length

medTamp Median T amplitude computed as the amplitude in mV between the T,y to the peak of the T-wave.

stdTamp Standard deviation of the T-wave amplitude

medST Median segment defined as the distance between QRS, ;s and T,,,

medSTvarl/2

AVNN
SDNN
RMSSD
pNN50
SEM
PIP
TALS
PSS
PAS
ratio

maxfpeq

Amplitude of the ST segment defined as the median amplitude between the PR segment and the ST
segment. The amplitude of the PR segment is computed as the median amplitude between P, to
QRS,,,. The amplitude of the ST segment is computed as the median amplitude between the QRS ;¢

and T, or alternatively QRS y+60 ms to the T,.
Average NN interval duration (ms)
Standard deviation of NN interval duration (ms)

Root-mean-squared difference between adjacent NN intervals (ms)
Percent of NN interval differences greater than 50 milliseconds (%) (13}

Standard error of the mean NN interval (ms) (131[14)
Percentage of inflection points (%) (131[14)
Inverse average length of segments (13114}

Percentage of NN intervals that are in short segments (13][14)
Percentage of NN intervals that are in alternation segments of at least 4 intervals (%) (131[14)
Ratio of the power spectral frequency in the band 5-9 Hz normalised by the total power frequency

computed on the PQRST cancelled signal

Peak frequency in the band 4-45 Hz from the power spectrum computed on the PQRST cancelled

signal

Table 1: Subset of the features extracted for each recording and used within the SVM classifier to distinguish between the different classes (N/A/O/~).
All the morphological fiducials were computed using the wave detector from (13)).
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Figure 1: Fy score obtained on the averaged training and validation sets during cross-validation performed by the SVMs trained for N versus O,A,~
and A versus O, ~ and O versus ~. The figure illustrates the impact of adding features to the classifier in getting better average performance on both
training and validation sets. For producing the plot the feature importance are first ranked and then added one by one for training and validating the SVM.
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Fi gure 2: Per class distributions for two important features (AVNN and CosEn).

Results
RCF TS
Fyn | 090 | 0.89
Fi,4 0.83 | 0.82
Fi 0 0.75 | 0.70
Fi,~ 0.65 NA
F; \ 0.83 \ 0.80

Table 2: Results obtained on the repeated cross-fold (RCF) validation
sets and on the test set (TS, phase-2). NA: not available.

| on [a] o |~
N [ 4618 | 23 | 376 | 33
Al 20 |605| 108 | 5
0

533 | 93 | 1792 | 39
50 7 52 175

Table 3: Average confusion matrix obtained on the validation subset of
the cross-fold for the entry 3 of phase 2.
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