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Abstract 

Cardiac arrhythmias are the leading cause of death in 
the western world, where atrial fibrillation (AF) is the most 
common arrhythmias. The PhysioNet/CinC 2017 
Challenge aimed to trigger a design of an algorithm that 
accurately classifies short single ECG lead record to 4 
categories: normal rhythm, atrial fibrillation, noisy 
segment or other arrhythmias. The algorithm was 
optimized on randomly selected records out of the 
challenge learning set (8528 records after reassuring it 
includes 60.43% of normal records, 0.54% of noisy 
records, 9.04% of AF records and 30% of other rhythm 
disturbance) and tested on hidden test database. A novel R 
peak detector was used to accurately detect the R peaks. 
Based on the R peak annotation, the P,Q,S and T peaks 
were detected and ECG beat morphology was extracted. 
Quadratic SVM classifier that include combination of 62 
features was used to classify the short ECG record to one 
of the four categories mentioned above. For records which 
were classified as "normal" additional neural network 
classifier was applied.  

Our algorithm reached results of total score (F1) of 0.8 
(ranked 24 out a total of 90 open-source software entries), 
whereas normal rhythm score (F1n) was 0.9, AF rhythm 
score (F1a) of 0.81, and other rhythm score (F1o) of 0.69.   

 
 

1. Introduction 

Atrial fibrillation (AF) that is characterized by irregular 
and tachycardic heart rate, is the most common sustained 
cardiac rhythm disorder [1]. Although AF episodes per se 
are not dangerous, their side effects specifically increase in 
the risk for stroke are fatal [2].  Unfortunately, the available 
treatment today including invasive (catheter ablation) and 
non-invasive (drugs) are less than satisfactory [3].  

 Although, detection of AF is the first step to eliminate 
the side effect [4], AF detection and specifically automatic 
detection remains problematic, because it may be episodic. 
The classic methods for automatic detection of AF relate 
to the analysis of the absence of P waves. For that task 
neural network [5], statistical modelling [6] and wavelet 
analysis [7] were used. However, these methods perform 
poorly in the presence of noise, specifically from mobile 
device recordings. Later progress in the field relates to RR 

detection and the quantifying of its variability around the 
means (e.g., Poincaré plot analysis [8], entropy [9], etc.). 
Finally, recent approaches taking both approaches 
advantage by performing machine learning on the 
classification features [10] were reported. 

More general approach was used recently to distinguish 
only between normal rhythm and other rhythm 
disturbance: arterial premature contraction, 
supraventricular tachycardia, premature ventricular 
contraction, ventricular tachycardia and ventricular 
fibrillation [11]. This approach used a support vector 
machine based classifier. Similar approach was used to 
distinguish arrhythmia in general from normal records 
[12].  However, in both cases no distinction was made 
between AF and other rhythms.  

Despite the importance of automatic detection of AF 
three main factors eliminates the development of such 
algorithm: (i) the lack of gold standard databases from 
mobile ECG that include classification, (ii) robust 
algorithm that can accurately detect R peaks in the 
presence of AF episodes and noise and (iii) the ability to 
distinguish between AF and other source of arrhythmias.    
 The Physionet/Computing in Cardiology Challenge 
2017 attempts to address the first limitation by providing 
classified data base of short single ECG lead record 
divided to 4 categories: normal rhythm, atrial fibrillation, 
noisy segment or other rhythm disturbance. Success of an 
algorithm to distinguish between the 4 categories will deal 
with the latter two challenges.  
 
2. Methods 

2.1. General 

 The PCinCC2017 consisted of 2 datasets; a training set 
of 8,528 single lead ECG recordings from 9s to just over 
60s and test set contains 3,658 ECG recordings of similar 
length. All records consist of one bipolar channel recorded 
by AliveCor device. The data were sampled at 300 Hz and 
filtered  by band pass filter in the device itself. The training 
set data was annotated to one of the four types: Normal 
(5154 out of 8528 records), AF (771 out of 8528 records), 
other rhythm (2557 out of 8528 records) and noisy (46 out 
of 8528 records). The scoring of the challenge uses a F1 
measure, which is an average of the three F1 values from 
each classification type:  
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where N is the total number of records the algorithm 
recognized as normal, Nn is the correct number of normal 
records classified by the algorithm as normal and n is real 
number of normal records.  
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where A is the total number of records the algorithm 
recognized as AF, Aa is the correct number of AF records 
classified by the algorithm as AF and a is real number of 
AF records.  
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where O is the total number of records the algorithm 
recognized as other rhythm, Oo is the correct number of 
other rhythm records classified by the algorithm as other 
rhythm and a is  real number of other rhythm records.  
 
2.2. R peak detection 

    We used our novel R peak detector that includes 7 
mathematical manipulations (absolute value of Hilbert 
transform of the signal, first order derivative, polynomial 
fit of 34th order, Heuristic filter, second derivative of the 
signal, smoothing by convolution and a threshold). The 
algorithm deals with sudden movement of the patients, 
electrical drift, breathing noise, electrical spikes, 
environmental high frequency noise, reverse polarity, 
premature ventricular contraction, and enlarged P/T 
waves. 
 
2.3. P, Q, S and T peaks detection 

After R peaks were detected a segment of 0.3s before and 
after each R peak was defined as ECG beat. Averaging the 
defined ECG beats yielded the average ECG beat. After an 
average ECG beat was extracted, we found the first point 
after the R peak where the derivative changes sign and 
annotated it as S point. Similarly, the first point before the 
R peak where the derivative changes sign was annotated as 
Q point. T point was determined as the absolute maximal 
point between S point and S+100ms. P point was 
determined as absolute maximal between S-150ms to S 
point. Fig. 1 demonstrates the major ECG peak and beat 
morphology used here as features.  

 
2.4. Learning strategy and algorithm  

    The training set (see above) was partially used for 
learning and part to test the algorithm. We divided the set 
to 7 parts, 6/7 was used for learning and 1/7 to test the 
algorithm performance. Each part includes 60.43% of 
normal records, 0.54% of noisy records, 9.04% of AF 
records and 30% of other rhythm disturbance. After 
learning on the first set, the data were mixed and again 

divided to 7.  
    A quadratic support vector machine (SVM) algorithm 
was used to make an initial classification into four 
categories mentioned above. The SVM was trained on 62 
selected features, without performing principle component 
analysis first (PCA). Kernel function was quadratic and 
scaled. Multiclass method was "one-vs-one". After 
receiving the classifier results additional classification 
rules were applied to refine the decision algorithm. If the 
ECG record was classified by SVM as "Normal", 
additional neural network classifier was applied. This 
classifier was trained to distinguish only between 
"Normal" records and "Other" records. If the neural 
network classifier output was above 0.65 (probability of 
the record being "Other"), the record's classification was 
changed from "Normal" to "Other". This neural network 
classifier was a feed forward 2 layers network and consists 
of 20 neurons and was trained using the same 62 features. 
If less than 9 heart beats were detected, even if the 
algorithm classified the signal to either group, the 
algorithm classified it to noise.  See Fig. 2 for the schema 
describing the algorithm steps.     
 
2.5. Learning features 

  Features were calculated based on 6 categories: heart rate 
and heart rate variability [13], signal entropy [14], time-
frequency domain features [15], intrabeat temporal interval 
variability [15], QRS morphology and average beat 
morphology [15]. We chose the features that provide the 
highest ability to distinguish between the groups, but, also 
ensure not to choose too many features which might lead 
to overfitting.  
 
3. Results 

In phase two, we obtained an overall F1 score for the test 
set of 0.8. The F1 scores for the different classes were 0.9, 
0.81, 0.69 for normal, AF, and other respectively. See 
Table 1 for the average confusion matrix obtained during 
training validation.  

We used 6 different categories of features for the 
learning algorithm. Time-frequency domain features were 
used to distinguish between other rhythm to other 3 
categories. Heart rate and heart rate variability were used 
to distinguish mainly between AF and others. Signal 
entropy was used to distinguish between noise and other 
three categories.   Intra-beat temporal interval variability 
was used to distinguish between other rhythm and the other 
3 categories. QRS morphology was also used to distinguish 
mainly between other rhythm to the other 3 categories. 
Average beat morphology was used to extract features that 
are relevant mainly to other rhythm category, meaning 
arrhythmias that can be diagnosed by morphological 
abnormalities in either QRS segment or other beat parts.  
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Figure 1: Major morphological features of ECG signal.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 

 
 
 
 

Figure 2: Block diagram of the algorithm to classify the ECG signal.  
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 Normal AF Other Noise 
Normal 4772 9 244 4 
AF 17 650 70 0 
Other 455 51 1960 10 
Noisy 35 5 21 225 

 
Table 1: Average confusion matrix obtained on the 
validation subset of the cross-fold for 7 cross-folds of the 
training set.  
 
4. Discussion 

   We found here that 62 features were the optimal number 
of features for the learning strategy. Interestingly, less 
features would decrease F1, but the same happen if more 
features were used. Thus, optimization of the number of 
features is not less important than choosing the features 
themselves. 
   The major element that allows us to calculate all the 
features used here is the precise R peak detector. Finding 
precisely the R peak allows to calculate the other waves 
and thus intra-beat temporal interval variability, QRS 
morphology and average beat morphology.   
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