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Abstract

Introduction: The aim of the Physionet/CinC Challenge
2017 is to automatically classify atrial fibrillation (AF)
from a short single lead ECG recording. The Challenge
provides 8,528 labeled ECG recordings, each recording
was labeled as normal, AF, other, or noisy. In addition, the
Challenge provides sample code which includes an R-peak
detector and a simple classifier.

Algorithm: We use an ensemble of features extracted
from the ECG signals to create a four-class support vec-
tor machine (SVM) classifier. Included in the feature set
are statistics obtained from the ECG signal, its spectrum,
and the RR-intervals. In addition, we learn a 32-element
sparse coding dictionary on the sorted RR-intervals of the
ECG signals. Using the dictionary, we calculate a sparse
coefficient vector for each training sample and put these
through a soft-margin linear SVM. The soft-margin scores
are used as additional features in the final classifier.

Results:  Our algorithm achieves cross-validated F1
scores of 0.874, 0.756, and 0.689 (for normal, AF,
and other files, respectively), resulting in a final cross-
validated challenge score of 0.773. The score when tested
on a subset of the unknown data is 0.78 (with F1 scores of
0.88, 0.80, 0.65). The official challenge score was 0.77.

Conclusions: We developed an algorithm to classify
ECG recordings as normal, AF, other, or noisy. Our re-
sults show that sparse coding is an effective way to define
discriminating features from a list of sorted RR-intervals.
In addition, these sparse codes complement more com-
monly used features in the classification task. Further
work will attempt to increase the accuracy of the algorithm
by exploring other features and classifiers while still using
sparse coding as an unsupervised feature extractor.

1. Introduction

This work describes the solution of our entry in the 2017
Physionet/CinC Challenge. The goal of the Challenge was
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to accurately classify ECG recordings. The Challenge
details can be found at https://physionet.org/
challenge/2017/. The database we used in conjunc-
tion with the challenge is described in detail in [1].

The novelty of our solution and the focus of this pa-
per relates to using sparse coding as a tool for performing
unsupervised feature extraction. Many researchers are in-
vestigating the use of sparse coding in classification tasks
[2-9]. Our own previous work has found success in using
sparse coding features alone or with other problem-specific
features in a classification setting [10, 11].

2. Algorithm

2.1. ECG Preprocessing

When examining the ECG signal, we used two algo-
rithms to extract the times and voltage values of the fiducial
points of the ECG beat. The first algorithm was provided
by the Challenge organizers and is based on the Pan and
Tompkins (P&T) method of QRS detection [12, 13]. The
second algorithm was an ECG delimiter based on the work
of [14] that identified all parts of the PQRST complex.

For the R-peak detection part, we closely followed the
algorithm presented in [14] with minor variations. Firstly,
we used six second segments to perform both R-peak de-
tection and delineation. Secondly, for each segment, we
checked if any of the RR intervals within the segment was
greater than 2.6 seconds. If it was, we declared that seg-
ment as noisy and ignored it during further processing.

There are also minor differences from [14] in our im-
plementation of the PQST detection. For the Q detec-
tion, after the phasor transform of the windowed signal,
we searched for a local minimum. If there was no local
minimum, the start time of the window was declared as
the Q point. The S point is defined as the global maximum
of the absolute value of the seek window after the gamma.
For P and T points, we analyze the local maxima of the
seek windows. The local maximum with the greatest mag-
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nitude before the R-peak is chosen as the P point. The local
maximum with the greatest magnitude after the R-peak is
chosen as the T point.

2.2. Feature Ensemble

After processing the ECG signal with both R-peak de-
tection algorithms as well as the in-house PQRST algo-
rithm, we calculated several statistics and other measures
to use as features in the classifier. These features are de-
scribed in Table 1.

2.3. Sparse Coding

We used the RR-interval vectors obtained using our
in-house R-peak detector in our sparse coding dictionary
learning algorithm. In order for the linear dictionary to ex-
tract meaningful features, we first sorted the RR-intervals
and interpolated the sorted list to have a length of 50. The
purpose of this was to allow the ‘short’ and ‘long’ RR-
intervals from each signal to line up correctly. After sort-
ing and interpolating the RR-intervals, we applied sparse
coding as an unsupervised feature extractor.

Sparse coding is a matrix factorization problem that tries

to decompose a data matrix (Y) into the product of a dic-
tionary matrix (D) and a sparse coefficient matrix (X):

Y = DX. (1)

Fig. 1 gives a visual representation of Eq. 1. Each column
of Y represents a data sample, which in our case is the
sorted interpolated list of RR-intervals. Each column of the
dictionary matrix, D, can be thought of as a commonly-
occurring feature learned from the training data. Because
we sorted the RR-intervals prior to learning the dictionary,
the first entry of each dictionary elements corresponds to
the shortest RR-interval extracted from the ECG signal.
Each column of X is a sparse vector that indicates which
dictionary elements (features) are used to reconstruct the
corresponding data vector.

Mathematically, performing this matrix decomposition
corresponds to solving the following /y-regularized lease
squares problem [19,20]:
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In this equation, each yy, corresponds to a column of Y

Table 1. Features used in SVM Classifier

Feature Description

6 R-Peak Statistics

10 RR-Interval Statistics

8 Irregularity Features

6 Entropy Features

2 Algorithm Agreement Statistics
5 ECG Statistics

1 Heart Rate

1 RR-Interval Interdecile Range
9 PQRST RMS Statistics

9 PQRST Interval Statistics
15 PQRST Amplitude Statistics

1 Polarity Feature
1 Noise Feature

4 Sparse Code Soft-Margin SVM Scores

Mean, standard deviation, and median of R-peak values calculated
from both R-peak algorithms

Mean, standard deviation, mean, min, and max of RR-intervals cal-
culated from both R-peak algorithms

AFEvidence, PACEvidence, IrregularityEvidence, and Origin-
Count, as defined in [15], calculated from both R-peak algorithms
Approximate Entropy [16], Sample Entropy [17], and Coefficient
of Sample Entropy [18] calculated from both R-peak algorithms
Mean and standard deviation of the difference between the statistics
mentioned above calculated from the two R-peak algorithms (15
each)

Mean, standard deviation, skew, kurtosis, and median of ECG signal
Number of R-peaks (using P&T method) divided by duration of
sample

Interdecile (10%-90%) range of the in-house RR-intervals (after re-
moving intervals larger than 2.6s)

Mean, standard deviation, and median of RMS values of P, R, and
T waves

Mean, standard deviation, and median of PR, RT, and QS intervals
Mean, standard deviation, and median of P, R, T, S, and RS normal-
ized amplitudes

Percent of the positive polarity R-peaks

Number of noisy six-second segments

Explained in Section 2.3
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Figure 1. Visual representation of sparse coding. The fea-
ture matrix (left) is factored into the product of a dictionary
matrix (center) and a sparse coefficient matrix (right).

and each x,, corresponds to a column of X. The dictio-
nary matrix and the sparse coefficient vectors are jointly
optimized. The dictionary is constrained to C, the set of
matrices whose columns have ¢>-norm less than one, to
prevent it from growing arbitrarily large. The A term is a
tradeoff parameter between sparsity and fidelity.

The minimization program presented in Eq. 2 is NP-
hard [21], but there are common methods to approximate
it and come up with workable solutions. In our work
we employ convex relaxation by replacing the £p-“norm”
with its closest convex norm, the ¢;-norm. We then alter-
nate solving for D and X while keeping the other fixed.
This method, known as the Alternating Minimization Al-
gorithm, is outlined in Alg. 1 [22,23].

Algorithm 1 Alternating Minimization.

Require: Signals {ym, € RN},—1  m, initial dictionary
Dy € C, regularization term A, number of iterations K

1: Initialize D <+ Dy

2. fork=1,...,Kdo

3: for several m € {1, ..., M} (in parallel) do
4 Calculate coefficient vectors:

1
5: T :zaurgmlniH’ym*Dx||§+)\||ac||1
xr
6: end for
7: Update dictionary:
11

8: D = argmin — — |lym — Dx 2

gmin gy > 5 Iy~ Dl
9: end for

10: return D

In our implementation of Alg. 1, we update the dictio-
nary using gradient descent, following the method reported
in [8]. Line 5 of Alg. 1 is a well-studied problem known as
‘basis pursuit denoising’ [24]. We solve it using the soft-

ware package 11_1s, developed by Koh, et. al. [25].

The intuition behind using sparse coding as a feature
extraction tool is that each column of the learned coeffi-
cient matrix defines how much of each dictionary element
(feature) is needed to reconstruct the respective column of
the data matrix. Ideally, the trained dictionary will have
some elements that correspond to normal heart features
and other elements that correspond to abnormal heart fea-
tures. For example, the sorted list of RR-intervals taken
from a healthy heart is fairly flat, while the sorted list cor-
responding to AF would have a non-negligible slope.

After learning a dictionary on the data matrix, we calcu-
lated the sparse feature vector corresponding to each ECG
file. We trained a cross-validated, linear, four-class, soft-
margin SVM on the sparse vectors. The four scores from
the soft-margin SVM are a measure of how likely the ECG
belongs to each of the four classes. We used these four
scores as features in our final classifier.

2.4. Classification

After extracting the 78 features from each ECG file,
we used LIBSVM to train a 10-fold cross-validated RBF-
kernel SVM that classified between normal, AF, other, and
noisy files [26]. We used the modified cuckoo search al-
gorithm to select the SVM learning parameters [27]. We
searched for parameters that maximized the score while
minimizing the range of the F1 scores corresponding to
normal, AF, and other files.

3. Results

The ten-fold cross-validated score for the final SVM,
which included the ECG-based features as well as the
sparse coding scores, was 0.773. The F1 scores for nor-
mal, AF, other, and noisy files were 0.874, 0.756, 0.689,
and 0.454, respectively. When tested on a subset of the
unknown challenge data, the algorithm achieved a score of
0.78. The F1 scores for normal, AF, and other files were
0.88, 0.80, and 0.65, respectively. The F1 score for noisy
files was not provided. The final official challenge score
was 0.77.

4. Conclusion

The work in this paper shows that sparse coding can be
used to augment a feature set in a classification setting. We
combined an ensemble of ECG-based features with sparse
coding soft-margin scores to produce our final classifier.
Future work could explore incorporating sparse coding and
our feature ensemble into different challenge solutions for
more accurate AF detection from ECG readings.
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