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Abstract 

Atrial Fibrillation (AF) is becoming an increasingly 

significant clinical matter as its prevalence keeps growing. 

Therefore, developing algorithms to accurately detect AF 

episodes from single-lead ECG recordings would benefit 

early and automatic diagnosis from monitoring devices. 

The aim of this study is to provide a Feedforward Neural 

Network (FFNN) classification model and asses its 

performance in order to discriminate short single-lead 

ECG registers among 4 groups: Normal (N), AF (A), Other 

rhythms (O) and noisy (~). 

We extracted automatically 72 features derived from 

ventricular activity from each of the 8528 ECG records 

provided by the 2017 PhysioNet/Computing in Cardiology 

Challenge. Next, we performed a Feature Selection (FS) 

and a training/validation process through a grid search 

over a set of FFNN training parameters. We used a F1 

scoring in order to assess the classification performance. 

Results shown that filtering 50 features during the FS 

stage improved the initial classification performance from 

F1=0.70 to F1=0.73. The following tuning of FFNN 

training parameters showed the best results during the 10-

Fold Cross-Validation with F1=0.76 (F1n=0.87, 

F1a=0.78, F1o=0.65, F1p=0.45) using 200 epochs, 

α=0.7, β=0.0, and one hidden layer made of 128 units. The 

final score on the test data was F1=0.77, demonstrating 

the robustness of the presented method. 

Our strategy revealed promising classification scores 

using a robust validation approach. The resulting 

classification model is computationally low consuming 

during classification, hence is a good candidate to be 

implemented in wearable patient management systems. 

 

1. Introduction 

The clinical importance of cardiac arrhythmias is 

increasing along with their incidence and prevalence 

mostly associated with population aging [1]. Among these 

diseases, atrial fibrillation (AF) stands out [2] since its 

growing trend is more significant and since in many 

occasions it can be difficult to diagnose, due to paroxistic 

behaviour and the absence of symptoms in some cases. 

On the other hand, nowadays we are in a scenario where 

wearable devices are gaining great interest as monitoring 

devices in both research and clinical ambits [3]. However, 

automatic methods to provide a reliable diagnostic of AF 

using the ECG signals provided by wearable devices is still 

challenging, particularly if other normal or abnormal 

rhythms are also considered. 

The aim of this study is to provide a classification model 

and asses its performance in order to discriminate short 

single-lead ECG registers among 4 groups: Normal (N), 

AF (A), Other rhythms (O) and noisy (~); in the context of 

the 2017 PhysioNet/Computing in Cardiology Challenge 

[4]. 

The strategy proposed in this work is based on 

automatic signal Feature Extraction (FE) derived from 

ventricular activity, plus a posterior Feature Selection (FS). 

Finally, those selected features were used in order to train 

and validate the classification performance of a set of 

different Feedforward Neural Networks (FFNN) through a 

tuning of training parameters.  

Since the signals used share many characteristics with 

those offered by wearables devices, the resulting 

classification model could be a good candidate to be 

implemented in wearable patient management systems 

being as this approach is computationally low consuming 

during classification. 

 

2. Materials 

As database for this study we used the 8528 single-lead 

ECG registers provided by the competition. Deeper 

explanation of the database can be found in [4]. 

 

3. Methods 

This section describes the signal feature extraction and 

selection processes, plus the model validation 

methodology used during this work. All these stages were 

carried on through MATLAB (2017a, The MathWorks). 
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3.1. Signal preprocessing 

Provided signals were already band-pass filtered 

between 0.5Hz and 40Hz, so we performed an artefacts 

filtering as unique signal preprocessing stage. To do so, we 

used a 0.5 second sliding window in order to calculate 

aberrant maximum and minimum values, and sections 

surrounded by outliers were not considered for analysis 

purposes. 

 

3.2. Scoring 

2017 PhysioNet/Computing in Cardiology Challenge 

scoring rules are described in [4], where F1a, F1n, F1o and 

F1p are the individual score for A, N, O and ~ classes 

respectively. F1 represents the mean among F1a, F1n and 

F1o values, and consequently the classification 

performance for a given model in this work. We report F1p 

although is not necessary in order to calculate F1. 

 

3.3. Feature Extraction 

We automatically extracted 72 signal features derived 

from ventricular activity from each ECG record. Atrial 

activity related features were avoided since atrial signal 

can be easily obscured by artifacts and noise, or even not 

be present in the signal. To carry out this task, initially, we 

extracted the RR sequence using a QRS detector based on 

the first derivative of the ECG. Then we filtered the 

outliers from the RR sequence, and obtained the first and 

second derivatives of that sequence (RRd1, RRd2). 

Using the above information, the extracted signal 

features can be grouped as: 

1. Basic statistics (mean, standard deviation, kurtosis, 

skewness) over the RR, RRd1 and RRd2 sequences. 9 

features. 

2. Features based on RRd1: RMSSD, pNN25, pNN50, 

pNN75, where pNNxx denotes the percentage of intervals 

between normal beats exceeding xx ms. 4 features. 

3. Lorenz plot-based features using RRd2: Angular 

variability, dispersion of the distance between points to 

origin, and differences between 2 and 3 consecutive beats. 

8 features. 

4. Same statistics as in points 1 and 2, but using an 8 

seconds sliding window and a step size of 2 seconds. Once 

the matrix of values is obtained using each signal interval, 

we extracted the minimum, maximum, mean and standard 

deviation for each feature, appending all this values in a 44 

features vector. 

5. Other features: Shannon entropy of the RR sequence, 

Lempel-Ziv complexity of the RR time series after 

binarization using the median as threshold, and ratio 

between the number of different QRS patterns found and 

the total number of waves detected. 3 features.  

6. Dynamic Time Warping (DTW) distance value among 

the mean pNNx vector [5] for each class (pNNx(A), 

pNNx(N), pNNx(O), pNNx(~)) and the corresponding 

pNNx(i) vector for each i sample. 4 features. 

The last features group was the unique that needed a 

previous processing of the dataset in order to obtain the 

mean pNNx vectors for each class. Figures 1 and 2 show 

the result from varying the threshold, denoted by x, to 

obtain the ratio of consecutive RR that differs more than x 

ms. Figure 2 also shows standard deviation of measures for 

N and A groups. 

 

 
Figure 1: Mean pNNx vectors [5] obtained at the provided 

dataset for each class: pNNx(A), pNNx(N), pNNx(O) and 

pNNx(~). These vectors are necessary in order to get the 

DTW distance of any other i sample with its own pNNx(i). 

 

 
Figure 2: Mean pNNx vectors [5] and their standard 

deviation for class A and N (pNNx(A), pNNx(N)). 

 

Using the vectors presented above, we propose 4 new 

features (group 6) using the DTW metric in order to 

calculate a distance among the pNNx vector generated for 

each i sample (pNNx(i)), and each mean pNNx vectors 

corresponding to each class: pNNx(A), pNNx(N), pNNx(O) 

and pNNx(~). Hence, these new distance features are 
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denoted as 

𝐷𝑡𝑤𝑁𝑁𝑎(𝑖) = 𝐷𝑇𝑊(𝑝𝑁𝑁𝑥(𝐴), 𝑝𝑁𝑁𝑥(𝑖)) 
𝐷𝑡𝑤𝑁𝑁𝑛(𝑖) = 𝐷𝑇𝑊(𝑝𝑁𝑁𝑥(𝑁), 𝑝𝑁𝑁𝑥(𝑖)) 
𝐷𝑡𝑤𝑁𝑁𝑜(𝑖) = 𝐷𝑇𝑊(𝑝𝑁𝑁𝑥(𝑂), 𝑝𝑁𝑁𝑥(𝑖)) 
𝐷𝑡𝑤𝑁𝑁𝑝(𝑖) = 𝐷𝑇𝑊(𝑝𝑁𝑁𝑥(~), 𝑝𝑁𝑁𝑥(𝑖)) 

 

Figure 3 shows the boxplot using DtwNNn values in our 

dataset. Using all the above detailed features, we created a 

dataset consisting of 8528 samples and 72 features for each 

sample. 

 

Figure 3: Boxplot of the DtwNNn proposed feature values 

obtained using the DTW distance among each pNNx(i) 

value of the database and the mean pNNx(N) vector 

corresponding to the Normal rhythm class. 

 

3.4. Feature dataset preprocessing 

First, for each feature, outliers exceeding 3 times the 

standard deviation above or below the median were 

replaced by these same limits. 

Next, if some sample contained a NaN value due to a 

feature extraction error, we removed that sample from the 

dataset. According to this rule, 25 samples were removed 

from the dataset, obtaining a final dataset with 8503 

samples. Since 64% of removed samples corresponded to 

Noisy class, during the test stage we classify as (~) those 

containing some NaN value. Finally, we performed a z-

score using the training set to rescale the whole dataset. 

 

3.5. Feature Selection 

A FFNN with 1 hidden layer of 128 units was used in 

order to determine the F1 score through a hold-out strategy 

(50%-50% train/test split), using 75 epochs to avoid 

overfitting. To determine the best learning rate (α) and 

momentum (β) FFNN training parameters for this stage, an 

initial grid-search was performed. Next, we carried out a 

Feature Selection (FS) using a backward-elimination 

approach. Initially, all the variables are included in the 

dataset. A relaxation condition was added to the FS process 

in order to avoid early stopping criteria: if during the 

current iteration (j) of the algorithm, F1 score does not 

increase respect the (j-1) iteration, we select as feature to 

be removed the one that maximized F1 during the iteration 

(j) if and only if F1(j) > (F1(j-1) – 0.05).  

 

3.6. FFNN training and validation 

Using as inputs the selected features, we performed a 

grid search over the training parameters of a FFNN (α, β, 

architecture) in two stages: 1) A wide grid-search using a 

hold-out validation approach (50%-50% train/test split) 

using 100 epochs; 2) Assessment of the 10 best training 

parameters combinations through a 10-Fold Cross-

Validation (10F-CV) using 100 and 200 epochs 

respectively. Finally, parameters allowing to achieve 

higher F1 score were used in order to train the final FFNN 

with the whole dataset, to be submitted for the Challenge 

competition. 

 

4. Results 

Results showed an initial F1 score of 0.709 using the 72 

original features, achieved with α=0.6, β=0.1 (FFNN 1 

hidden layer of 128 units). During the FS stage, we 

removed 50 features, achieving a new F1 score of 0.734. 

We found that the DtwNNn and DtwNNp proposed features 

were within the selected set of features. 

 

Table 1. Best F1 scores achieved during hold-out 

validation stage using 100 epochs. Training parameters: 

number of units in the hidden layer (Architecture), learning 

rate (α), momentum (β). 

Architecture (α) (β) F1 

[1024] 0.7 0.1 0.7360 

[512] 0.6 0.1 0.7356 

[512] 0.5 0.1 0.7332 

[128] 1.0 0.1 0.7320 

[512] 0.5 0.4 0.7318 

[128] 0.7 0.0 0.7310 

[256] 0.5 0.1 0.7301 

[256] 0.5 0.4 0.7301 

[512] 0.8 0.1 0.7299 

[512] 0.7 0.4 0.7298 

 

Table 1 shows the results during the hold-out validation 

stage and Table 2 shows the results during the 10F-CV 

stage. All the FFNN reported consisted in 1 hidden layer. 

Best F1 score value was 0.7644, achieved with a FFNN 

made of 118 units in the hidden layer, using 200 epochs, 

α=0.7 and β=0.0. Finally, the FFNN trained with the whole 

training dataset and the best training parameters achieve a 
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final score value of F1=0.77 on the test data.  

 

Table 2. Best F1 (F1a, F1n, F1o, F1p) scores achieved during the 10-Fold Cross-Validation stage. 

#Epochs Architecture (α) (β) F1 F1a F1n F1o F1p 

200 [128] 0.7 0.0 0.7644 0.7768 0.8668 0.6496 0.4490 

200 [128] 0.6 0.1 0.7629 0.7761 0.8668 0.6458 0.4624 

100 [512] 0.5 0.4 0.7627 0.7723 0.8645 0.6512 0.5112 

100 [128] 0.7 0.0 0.7604 0.7766 0.8646 0.6402 0.4587 

100 [512] 0.6 0.1 0.7603 0.7694 0.8637 0.6477 0.4844 

200 [512] 0.5 0.1 0.7601 0.7656 0.8652 0.6494 0.4810 

100 [1024] 0.7 0.1 0.7600 0.7649 0.8638 0.6513 0.3974 

100 [512] 0.5 0.1 0.7599 0.7754 0.8632 0.6410 0.5097 

100 [512] 0.8 0.1 0.7585 0.7681 0.8646 0.6429 0.4962 

200 [1024] 0.7 0.1 0.7580 0.7629 0.8653 0.6457 0.4795 

100 [512] 0.7 0.4 0.7578 0.7681 0.8593 0.6460 0.4959 

200 [512] 0.5 0.4 0.7575 0.7635 0.8618 0.6471 0.4680 

 

5. Discussion 

Results obtained in this work showed differences in 

simple ventricular activity derived features for different 

rhythms, even when the arrhythmia had a supraventricular 

origin (AF). This allows for avoiding problems associated 

with absent or masked atrial activity. Also, FFNN showed 

good performance taking profit of those differences in 

order to classify the records in the 4 considered classes. 

Furthermore, the results of this method shows a high 

robustness since best F1 score in training and test data were 

0.76 and 0.77 respectively, showing no overfitting of the 

model. 

However, there were difficulties when discriminating O 

and ~ groups, since these groups aggregate records with 

different rhythms and characteristics, which results in great 

variability in considered features. Given this, we believe 

that including noise related features and further sub-

grouping are strategies that could enhance the obtained 

results. 

 

6. Conclusion 

We presented and evaluated a robust method for short 

single-lead ECG registers classification that combines 

ventricular feature extraction and selection, and a FFNN 

training and validation approach. The result is a low 

computationally consuming classification model suitable 

for wearable monitoring devices. Improving the 

identification of other rhythms other than normal or AF 

incorporating more specific features for these cases into the 

proposed method, is an interesting direction to explore in 

the future. 
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