
Can Supervised Learning Be Used to Classify Cardiac Rhythms?

Marcus Vollmer1, Philipp Sodmann1, Leonard Caanitz1, Neetika Nath1,2, Lars Kaderali1

1 Institute of Bioinformatics, University Medicine Greifswald, Germany
2 Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald,

Germany

Abstract

Background: This contribution relates to the Phys-
ioNet/CinC Challenge 2017 on classification of atrial fib-
rillation from short single lead ECG recordings. The aim
is to assign an ECG to one of these classes: normal sinus
rhythm, atrial fibrillation, an alternative rhythm, or too
noisy.

Methods: We trained a convolutional neural network
using waveforms of the QRS complex, P waves, T waves,
noise and inter-beat time series of labeled data from Phy-
sioNet in order to derive an accurate detection of the
characteristic components of normal and arrhythmic heart
beats. To identify rhythm patterns, a noise estimation func-
tion was used in combination with heart rate and analy-
sis of RR, RT and PR intervals. We analyzed the cross-
correlation of heart beat shapes by clustering the resulting
correlation matrix in order to distinguish normal and ab-
normal heart beats that might cause rhythm changes. We
examined the feature importance and used a random forest
algorithm to generate a decision tree to predict the rhythm
class. The classification performance was evaluated using
F1 scores.

Results: The convolutional neural network was able
to correctly identify more than 99% of all R peaks in the
QT database, whereas the detection of P and T waves
reached a true positive rate of 91% and 81% respectively.
The classification performance in 8,528 records of the
training data set was F1=0.94. An overall score of 0.81
was achieved when applying the algorithm to the hidden
test set of the challenge.

1. Introduction

Analyzing the heart rate variability, which is a physio-
logical phenomenon of heart beat variation over time, is
used to determine autonomic activity of a heart. Disorders
in the regular heart rate as a result of disturbances in the
electrical system of the heart are called arrhythmia. Expert
cardiologists can identify such a physiological variation of
the heart rate by analyzing the ECG leads (electrocardio-

gram) and thereby diagnose different cardiac disorders.
Several machine learning algorithms were proposed

(e.g. [1]) to classify ECG samples to arrhythmia classes,
based on the features extracted from the ECG. The QRS-
complex, P and T waves are the most important features
to extract from the ECG as they have specific characteris-
tic waveforms and are dominating the amplitude. A nor-
mal healthy heart rhythm can be identified by a specific
order: P wave, QRS-complex and T wave, which ap-
pear at defined and regular time intervals. Characteristic
for atrial fibrillation are irregular RR intervals, no distinct
P waves and usually variable intervals between two atrial
activations at >300 bpm [2]. ECG signals can capture de-
flections because of the anatomical difference of the atria
and the ventricles, their sequential activation, depolariza-
tion, and repolarization. Therefore, it is important to cor-
rectly annotate R, P and T peaks in order to perform cor-
rect prediction of cardiovascular diseases using supervised
learning algorithms. However, annotating P and T peaks
is difficult especially in the presence of noise.

This motivates us to develop a convolutional neural net-
work (CNN) to annotate such biomedical signals. Based
on these annotations derived from short ECG recordings,
our goal is to classify the hidden test set provided by the
PhysioNet/CinC Challenge 2017 [3]. The aim of the chal-
lenge is to assign the ECGs to one of these classes: nor-
mal sinus rhythm (N ), atrial fibrillation (A), an alternative
rhythm (O), or too noisy to classify (∼).

2. Methods

In order to achieve our aim, first a CNN was used to
annotate ECGs, followed by feature extraction. These fea-
tures were used as input variables in random forests to clas-
sify unlabeled ECG records.

The task for the CNN is to analyze an input ECG sig-
nal X=[x1, . . . , xn] of length n to generate an output an-
notation sequence a=[a1, . . . , an], where a could be ei-
ther R, P , T , ∼, O or an unknown type. Therefore, la-
beled datasets were used as input layers for the CNN for
training purposes. R, P , T waves, and interbeat segments
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Figure 1. Architecture of the convolutional neural network using the open-source software library TensorFlow, which was
used to learn features (R, P, T wave) of ECGs. In the convolution block, we used the hyperbolic tangent as an activation
function of the neurons followed by PReLU activation (parametric rectified linear unit). The output of the neurons from
the convolution block was combined using maximum pooling in the pooling section.

were taken from the QT database [4]. We included real-
istic noisy segments, which were generated by applying
the WFDB function nst [5] to clean records at different
and very low signal-to-noise ratios (see [6]). Additionally,
ECG records of extrasystoles and other arrhythmic beats O
were extracted from the MIT-BIH arrhythmia database [7].
The next step in our workflow was to perform data aug-
mentation. Data augmentation was performed with shift of
±17ms window size to generate data replicates. Further-
more, synthetic white noise was included in order to build
a robust model. In total about 12,000,000 characteristic
waveforms served as training examples. The architecture
of the CNN is illustrated in Figure 1.

For training purposes of the classification task, the chal-
lenge organizers provided 8,528 single lead ECG record-
ings with a record length up to 60 s. These recordings were
collected using AliveCor devices and were labeled by a
single expert. Finally, the CNN model was used to anno-
tate the unlabeled peaks of each single ECG record and
174 features were extracted.

Feature extraction From the annotated records, the ab-
solute value, percentiles, and interquartile range were com-
puted for the RR, the RT , and the PR intervals. Further,
these features were normalized to their relative intervals,
defined as successive differences divided by their mean
(according to [8]). The absolute counts and percentage of
extrasystoles with and without compensatory pause, dou-
blets, and triplets were also added as features. In order
to identify extra beats in the annotated records, we used
the relative RR intervals and classification rules based on

relations of successive intervals as proposed in [9]. We
defined the complexity (entropy) of RR intervals by com-
puting the standard deviation of the shortened relative RR
intervals, from which we removed detected extrasystoles.
Furthermore, we defined the entropy on higher grades, by
considering a lag when computing relative RR intervals.
Additional features were generated by adjusting interval
data by heart rate that was estimated by the 25% trimmed
mean of RR intervals of the records. In order to use shape
information, we computed the maximum cross correlation
for each pair of heart beat waveforms. After that, we con-
ducted k-Means and hierarchical clustering (average link-
age, euclidean metric) on the basis of the correlation ma-
trix and extracted basic cluster characteristics like the sil-
houette score and distance information.

Random forest Once the features are extracted, they are
fed to a random forest that is implemented in R version
3.4.1 [10] to classify the four rhythms (N , A, O, ∼). We
applied 10 repeats of 10-fold cross validation to the train-
ing dataset with 174 features and evaluated the perfor-
mance based on F1 scores, defined below in equation 1.
Also, the hyperparameters are optimized based on the best
F1 score. Moreover, the variable importance is generated
from the final model.

Evaluation criteria The classification performance was
evaluated for the training data set and the hidden test set of
the competition [3]. The confusion matrix was build and
the F1 score is computed by

F1 =
F1(N) + F1(A) + F1(O)

3
. (1)
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Figure 2. Features were extracted by analyzing the annotated records of the training set. A convolutional neural network
was trained to annotate the ECG records using the TensorFlow. In this training data set (A00002), the noise component is
elevated around the 20th second and arrhythmia are indicated by deflections in the sequences of relative RR intervals at
9th and 25th second. The RT interval time is at a constant level of about 260ms.

The scoring system treats all classes equally and is giv-
ing the accuracy on the basis of precision and recall. Partial
scores are giving by F1(x) for different types of classes
x ∈ {N,A,O,∼} and are defined by true positive (TP),
false positive (FP) and false negative (FN) counts:

F1(x) =
2 · TP

2 · TP + FP + FN
. (2)

3. Results

We evaluated the true positive rate and positive predic-
tivity of our CNN model by comparing the resulting an-
notations with the reference annotations given for the QT
database [4]. A strict tolerance level of 25ms and 50ms
was set for the time difference between both annotations to
count as successful (true positive). Some T wave annota-
tions occur twice in the reference annotation file so that we
have previously removed reference annotations which re-
fer not to the T wave peaks. Table 1 reports the CNN anno-
tation performance for both tolerance levels in 82 records.
The accuracy in the detection of R peaks was very high
with a true positive rate of 98.7% and a positive predictive
value of 99.7%, given a tolerance of 50ms. Also, the de-
tection of P waves works very well, 91.0% of all P waves
were correctly annotated while producing a low false neg-
ative rate of 4.7%. T wave detection was the hardest of all,

the sensitivity is 80.7% only. Fortunately, the positive pre-
dictive value of 89.8% is quite high, such that the effects
on the feature extraction process is not that serious, but
leads to interval sequences with missing values as seen in
Figure 2. Table 2 reports the overall and partial F1 scores
for the training and test set. Noisy records are the hard-
est of all to predict – of 284 noisy labeled records 99 were
falsely classified as A and 94 were classified as O. This
affects also the partial scores of A and O.

Table 1. Annotation performance for QTdb
R P T

Reference counts 86892 78665 88013
Model counts 86020 75126 79047
True positive rate
(sensitivity)

25ms 0.981 0.886 0.732
50ms 0.987 0.910 0.807

Positive
predictive value

25ms 0.991 0.928 0.815
50ms 0.997 0.953 0.898

Table 2. Classification performance measured by F1

Overall N A O ∼
Training 0.94 0.97 0.94 0.93 0.46
Test set 0.811 0.902 0.802 0.672 NA

1Final result on 3,658 recordings, excluding F1(∼)
2Challenge phase scoring based on 1,000 recordings
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Feature importance The important features were iden-
tified through random forests and were further analyzed.
The top 10 features are listed in Figure 3. Some of these
features are specialized to distinguish a single rhythm from
the other three classes. The complexity (entropy) of rela-
tive RR intervals [8] for instance, showed a strong dis-
criminative power to separate normal rhythms from the
others. Counts of extrasystoles are useful in order dis-
tinguish normal rhythms from atrial fibrillation and other
rhythms. The 90% quantile of RR intervals (adjusted by
heart rate) was found to be useful to discriminate atrial fib-
rillation from other rhythms. Noisy records were strongly
associated with cluster complexity measures, as defined by
the correlation matrix, which is not included in the top 10
list as it is sorted by the overall importance.
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Figure 3. Features in ascending order by its overall impor-
tance and differentiated according to rhythm classes.

4. Conclusion

The combination of supervised deep learning (CNN) for
the annotation of ECGs and an ensemble method (ran-
dom forests) for the classification of rhythms has shown
remarkable results in the training and hidden test set. Nev-
ertheless, we see opportunities to improve and extend the
quality of annotation, especially the detection of P and T
waves were just moderate. A better sensitivity could be
achieved with more accurate input data and an optimiza-
tion of batch sizes. Weak results are observed in the clas-
sification of noisy records, for which the used features are
not specific enough. We noted, the occurrence of noise

prior or subsequent to atrial fibrillation could be a rea-
son for misclassification. We believe that the combination
of machine-learning techniques in pre- and postprocess-
ing tasks and hand-crafted feature generation with human
knowledge is appropriate for to classify cardiac rhythms.
In the way we have solved the task, one is able to identify
the causes for misclassification. In contrast to total black
box systems, weaknesses can be easily identified and im-
provements can be made by implementing more specific
or new features in order to the increase the accuracy. This
is the way how we want to strengthen the trust in using
modern analyzing techniques in ECG processing.
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