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Abstract 

Atrial Fibrillation(AF) is a major public health risk but 

its identification is challenging because it may be episodic 

and non-symptomatic. Automatically identifying episodes 

of AF from a short segment of ECG would, thus, be 

beneficial. As a response to the Physionet/Computing in 

Cardiology Challenge 2017 we have implemented a three-

stage classifier which can classify segments of ECG into 

Noisy, Normal, AF or Other Rhythm. We employ a state-

of-the-art SQI for identifying noisy segments and then 

learn two different Support Vector Machine (SVM) 

classifiers using features extracted from the ECG. The 

features used are derived using a template matching 

approach via Dynamic Time Warping and using the 

statistical characteristics of the R-R intervals. Our average 

F1 score on the validation set was 0.66.  

 

1. Introduction 

Atrial fibrillation (AF) is the most common abnormal heart 

rhythm which occurs when rapid, disorganized electrical 

signals cause the heart's two upper chambers (the atria) to 

"fibrillate", i.e., to contract very fast and irregularly when 

moving blood into the ventricles [1]. While AF is not a life-

threatening arrhythmia, it has been associated with an 

increased risk for heart failure, stroke and mortality [2]. 

From a socioeconomic perspective, AF has also been 

associated with permanent disability, cognitive 

disturbance, hospitalization and absence from work [3]. 

Advances in the treatment of cardiac disease and the 

improved ability to diagnose AF have led to an increase in 

the reported prevalence of AF; the number of patients with 

AF in Europe is projected to be 14-17 million by 2030 with 

the number of new cases per year estimated at 120000-

215000 [3]. In the US, the prevalence of AF in 2030 is 

projected to be 12.1 million [4], making it an important 

public health problem and significant cause of healthcare 

expenditure in the western world.  

A major challenge in identifying incidences of AF is that it 

is often episodic; AF incidences are often paroxysmal, 

short-lived and asymptomatic. The ability to correctly 

detect and monitor AF using only short-segments of 

Electrocardiogram (ECG) signals is, thus, desirable, and 

would result in improved patient care and health outcomes.    

The present work describes an algorithm designed to 

address the topic of “AF classification using a short single-

lead ECG recording”, which was the Physionet/Computing 

in Cardiology Challenge 2017, described in [5].  

 

2. Methods  

Data were provided by the Physionet/Computing in 

Cardiology Challenge 2017. Data comprised of ECG 

recordings, collected using the AliveCor device. The 

training set made available to participants contained 8,528 

single lead ECG recordings lasting from 9s to just over 60s. 

A test set consisting of 3,658 ECG recordings of similar 

lengths will be used for the final scoring but is not available 

to participants until after the completion of the Challenge. 

ECG recordings were sampled as 300 Hz and were band-

pass filtered by the recording device. The ground truth 

classification was also provided. Data were classified in 

the four following categories: Normal, AF, Other 

(abnormal) rhythm and Noisy.  

 

2.1 Proposed algorithm  

As a pre-processing step, we initially apply a Savinsky-

Golay smoothing filter to the ECG segments. The 

algorithm then classifies the short ECG segments into the 

four categories using a three-stage classification scheme:  

I) Stage 1, Noisy/Clean: a state-of-the-art ECG signal 

quality index (SQI) is applied to all segments to determine 

if they are “acceptable” or “unacceptable” quality-wise. 

The algorithm, uses a set of decision rules, based on 

physiological viability and then proceeds to a template 

matching step where an average QRS template is extracted 

in each segment which is then used to calculate an average 

correlation coefficient of the template with each individual 

QRS complex in the ECG segment. The original algorithm, 

proposed in [6], performs quality analysis in 10s segments, 

it was therefore adapted and optimized for use in segments 
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of variable length. Segments which are determined to be 

“unacceptable” after application of the SQI are classified 

as “Noisy”. Segments which are determined to be 

“acceptable” are classified as “Clean” and proceed to the 

next classification step.   

ΙΙ) Stage 2, Normal/Abnormal: in this step, segments 

labelled as either AF or Other rhythm are collapsed into 

one group, collectively labelled as Abnormal. Using seven 

features extracted from the ECG segments, a Support 

Vector Machine (SVM) classifier is trained which is used 

to classify segments as Normal or Abnormal. Segments 

which are determined to be Abnormal after this step 

proceed to the next classification step.   

III) Stage 3, AF/Other rhythm: in the final classification 

step, we revert to the original labelling of AF/Other 

rhythm. Using the same seven features as in the previous 

classification step, a second Support Vector Machine 

(SVM) classifier is trained which is used to classify 

segments labeled Abnormal in the previous step, as AF or 

Other rhythm. 

A flow chart of the proposed classification scheme is 

shown on figure 1.  

 
 
Figure 1. Flow chart of proposed classification scheme.  

 

The features used in the 2nd and 3rd stage classifiers are 

explained next.  

 

2.2 Features  

Seven features were extracted from the ECG segments 

which were then fed into the two different SVM classifiers 

to perform classification steps 2 and 3. Two categories of 

features were used: two features are based on a template 

matching scheme employing Dynamic Time Warping.  

Five additional features are based on the statistical 

characteristics of the R-R intervals (the time-intervals 

between successive R-peaks).   

 

2.3 Template matching via Dynamic Time 

Warping  

Dynamic Time Warping (DTW) is a technique for 

aligning two time-series of different length, using a non-

linear transformation. Given two time series P and Q of 

lengths 𝑖 = 1 … 𝑁 and 𝑗 = 1 … 𝑀, respectively, a 𝑁 × 𝑀 

matrix is constructed where element (i,j) contains the 

distance of points 𝑑(𝑝𝑖 ,  𝑞𝑗). After using a piecewise linear 

approximation algorithm to transform P and Q to short line 

sequences, 𝑑(𝑝𝑖 ,  𝑞𝑗) is calculated as the absolute 

difference between the slopes in each short line. A 

cumulative distance measure 𝑐𝑖,𝑗 (also termed the 

alignment or warping cost), is then calculated, defined as 

𝑐𝑖,𝑗 = 𝑚𝑖𝑛 {

𝑐𝑖−1,𝑗 + 𝑑(𝑝𝑖 ,  𝑞𝑗)𝑙(𝑝𝑖)

𝑐𝑖−1,𝑗−1 + 𝑑(𝑝𝑖 ,  𝑞𝑗)(𝑙(𝑝𝑖

𝑐𝑖,𝑗−1 + 𝑑(𝑝𝑖 ,  𝑞𝑗)𝑙(𝑞𝑗)

) + 𝑙(𝑞𝑗)) 

where 𝑙(𝑝𝑖) and 𝑙(𝑞𝑗) are the duration of line 𝑝𝑖  and 𝑞𝑗 [7]. 

The optimal warping path is chosen as the one which 

minimizes the cumulative distance and it is then applied to 

Q as a non-linear transformation to obtain the best 

alignment with P.  

Template-matching approaches via DTW have been used 

in the past in [7] and [8] for quality assessment of the the 

Photoplethysmogram (PPG) by extracting a template pulse 

waveform from segments of PPG and aligning them with 

each pulse waveform in the same segment using DTW. In 

[7], the average correlation coefficient of each pulse 

waveform with the template was calculated to obtain a 

quality index. In [8], the alignment cost was taken as a 

quality index since the more similar two time-series are, 

the “cheaper” it will be to align them. Dissimilarity 

between a template and an individual pulse waveform was 

taken as an indication of the presence of noise.  

For the detection of arrhythmias, to take into consideration 

the variability in the duration between successive R-peaks, 

we employed a template matching approach via DTW  by 

extracting a two-beat template from each ECG segment, 

calculating its alignment cost with each two-beat 

waveform in the same segment and taking the average and 

standard deviation of the alignment costs. After 

performing R-peak detection using the Hamilton and 

Tompkins algorithm [9], the median R-R interval in the 

segment is calculated. The two-beat template is the 

extracted by taking the segment starting at half the median 

R-R interval before the first R-peak until half the median 

R-R interval after the second R-peak. The duration of the 

template is, thus, approximately equal to two R-R 
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intervals. The alignment cost of this template with each 

two-beat segment (taking it in the same way as the template 

around each two consecutive R-peaks) is then calculated 

after applying DTW. Example templates are shown on 

Figure 2. The basis of this approach is that a segment in 

normal sinus rhythm will have a low alignment cost since 

the QRS morphology and R-R intervals will be regular. 

However, a segment with arrhythmias will have variable 

R-R intervals, as well as variability in the QRS 

morphology, (e.g., in the morphology of the P-wave) so it 

will have a higher alignment cost. After calculating the 

alignment cost of each two-beat segment with the template, 

two features are extracted from each segment to be used in 

our classification scheme:  

D1: the mean of the alignment costs within a segment of 

ECG. 

D2: the variance of the alignment costs within a segment 

of ECG.       

 

2.4 Statistical characteristics of the R-R 

intervals 

Measures of variability in the R-R interval are well-

established features for differentiating between normal and 

arrhythmic segments of signal. Our algorithm uses the 

following five features:  

S1: Standard deviation of successive differences in R-R 

intervals (SDSD). This is a standard measure of variability 

in the R-R intervals.  

S2: Skewness of distribution of R-R intervals: skewness is 

the third standardised moment of a probability distribution 

and measures how symmetric the distribution is. The 

presence of an arrhythmia will result in the presence of 

outliers in the distribution of R-R intervals which will 

cause asymmetry in the distribution. Skewness is given by 

 

𝑆̂ =  
1

𝑁
∑ (𝑥𝑖−𝑥)̂3𝑁

𝑖=1

𝜎̂3                              (1) 

 
where 𝑥𝑖 is the discrete signal (the R-R intervals in this 

case), 𝜇̂ and 𝜎̂ are the empirical estimates of the mean and 

standard deviation of the distribution of 𝑥𝑖 and 𝑁 the 

number of data points in the signal.  

 

S3: Kurtosis of the distribution of R-R intervals: kurtosis is 

the fourth standardised moment of a probability 

distribution and measures how sharp the peak of a 

distribution is. Similarly to skewness, the presence of an 

arrhythmia will result in the presence of outliers in the 

distribution of R-R intervals which will flatten the 

distribution. Kurtosis is given by  

K̂ =  
1

N
∑ (xi−x)̂4N

i=1

σ̂4                               (2) 

where parameters are defined as in S2.   

 

While S2 and S3 rely on the assumption of normally 

distributed R-R intervals we observed that in some cases, 

the skewness and asymmetry of the distribution pointed to 

the shape of a gamma-distribution.  We therefore 

additionally include as features the shape (k) and scale (θ) 

parameters of the gamma distribution which would 

presumably differ between normal ECGs and ECGs with 

arrhythmias.   

These parameters are derived by fitting a gamma-

distribution to the distribution of R-R intervals in each 

segment, where the probability density function of the 

gamma-distribution is given by 

 

𝑓(𝑥; 𝑘, 𝜃) =
𝑥𝑘−1𝑒

−
𝑥
𝜃

𝜃𝜅𝛤(𝑘)
    for 𝑥 > 0 and 𝑘, 𝜃 > 0              (3) 

 

Where 𝛤(𝑘) is the gamma function value at 𝑘.  

The final features included in the classification algorithms 

are, thus: 

Figure 2. 30s ECG segments with Normal rhythm (left) and Atrial Fibrillation (right) from the training set with corresponding two-

beat template (top waveform) and example two-beat templates from the same segment. In the Normal rhythm segment the extracted 

two-beat waveforms would have a small DTW alignment cost whereas in the AF case the alignment cost would be higher due to the 

variability in the length between successive beats.  
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S4: The shape parameter k of the gamma-distribution 

S5: The scale parameter θ of the gamma-distribution 

 

 

2.5 Support Vector Machine Classifiers  

For the two different classification steps, features D1, 

D2, S1, S2, S3, S4 and S5 were fed into an SVM classifier 

with a radial basis kernel function (with a σ=0.5 which was 

optimized using trial and error).  

 

3. Results  

We evaluated the performance of the proposed system on 

the validation set provided by the Physionet/ Computing in 

Cardiology Challenge 2017. The results were assessed in 

terms of the F1 score which is a measure of classification 

performance in the absence of True Negatives (TN). The 

assessment strategy is explained in detail in [5].   Table 1 

shows the F1 scores obtained for the four types of signals 

 

Table 1. F1 scores on validation data 

 

Type F1 score 

Normal 0.7759 

AF 0.7347 

Other rhythm 0.4404 

Noise 0.7660 

 

4. Discussion 

We have presented an algorithm for detecting AF and other 

arrhythmias from short segments of ECG which relies on 

a three-stage classification scheme and employs several 

features which are based on a template matching approach 

using Dynamic Time Warping (DTW) and low- and high-

order statistics of the distribution of R-R intervals. Our 

algorithm performed satisfactorily for detecting noisy 

segments and segments of normal rhythm and AF but 

underperformed for detecting Other rhythms. 

Differentiating between the different abnormal rhythms 

(AF/Other rhythms) is difficult, especially since the nature 

of the different rhythms is not clearly known. It is possible 

that building a system for differentiating between AF and 

a specific other type of arrhythmia would perform well if 

the differences between the presentation of the two 

arrhythmias on the ECG were clearly understood such that 

appropriate features were selected. Additionally, it would 

be interesting to explore the performance of the proposed 

system for different durations of signal. All statistical 

features used for the classification steps of the algorithm 

might have better differentiating performance for longer 

segments of signal compared to smaller segments of signal 

where only a few R-R intervals are found. In general, a 

system which relied on a pre-determined length of window 

for processing would likely perform better. Lastly, DTW 

is a computationally intensive process which slows down 

the procedure. However, in practice the identification of 

arrhythmias from the ECG could be done with some time-

delay without compromising the clinical requirements of 

the system.   
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