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Abstract 

We present an easy-to-understand classifier for the 

PhysioNet/Computing in Cardiology Challenge 2017. The 

classifier mimics the workflow of a human expert in 

classifying atrial fibrillation and other cardiac 

arrhythmias based on short single lead 

electrocardiogram. No computational methods were used 

for defining or tuning the classification rules. 

The ECG data was preprocessed by running a custom 

made beat detection and clustering algorithm. Samples of 

preprocessed data were then shown to a human expert, 

who was asked to define rules for classifying the data into 

subsets. The resulting one-sided binary tree classifier 

scored 73 % in a hidden subset. 

Our goal was to study how well simple human 

understandable rules are able to compete against 

advanced classification system – they are compatible, but 

at least our approach was clearly behind the top score in 

the competition (83 %). 

 

 

1. Introduction 

We present an easy-to-understand electrocardiogram 

(ECG) classifier for the PhysioNet/Computing in 

Cardiology Challenge 2017 [1]. The classifier mimics the 

workflow of a human expert in classifying atrial 

fibrillation (AF) and other cardiac arrhythmias (O) based 

on short single lead electrocardiogram (ECG). No 

computational methods were used for defining or tuning 

the classification rules. 

In clinical practise computer software and signal 

processing algorithms help human physicians to diagnose 

cardiac patients. Experienced practitioners have complex 

mindset for making the actual diagnosis, but the ECG 

evaluation is still strongly based on rather simple and 

mostly binary rules and ECG features that are detectable 

by eye. On the other hand, machine learning algorithms 

are becoming increasingly popular and efficient in 

scientific publications. We believe that algorithms with 

features of artificial intelligence are likely to start 

dominate the methods used in clinical practise during the 

next decade. This will probably be evident in the top 

scoring competitors of CinC2017 as well. 

In this study, we set our own challenge to see how well 

simple binary rules, set by a human expert, can compete 

against advanced classifier systems.  

 

2. Methods 

The ECG data was preprocessed by running a custom 

made beat detection and clusterization algorithm. After 

beat detection, beats were automatically labelled as 

normal beats (Nb), or supraventricular ectopic beat (Sb) 

or ventricular ectopic beats (Vb). The classifier was then 

generated in an iterative process with a human expert. 

During each iteration the expert was asked to add or 

modify a binary rule (belongs / does not belong to) for 

classifying a signal into one of the four classes (AF (A), 

O, normal rhythm (N), or noisy (~)). These rules defined 

the classifier algorithm. 

The iteration process was run in the prototype lab at 

RemoteA Ltd. RemoteA develops ECG analytic services, 

and the lab had a wide set of implemented ECG markers 

available. The expert in this study was Heikki Väänänen 

who has technical background and over two decades of 

experience in developing ECG signal processing 

algorithms. He is very familiar with the set of available 

ECG processing algorithms.  

Due to the nature of this study, algorithm descriptions 

cannot be included in this paper in full detail. If 

necessary, the details can be checked from the open 

source software code [1].  

 

2.1. Data 

Training set consisted of 8528 single lead ECG 

recordings that were collected using AliveCor device. The 

length of the measurements varied from 9 to 60 seconds, 

and the sampling rate was 300 Hz. The training set was 

classified by the competition organizers into four subsets: 

normal rhythm (N, 5050 recordings), atrial fibrillation (A, 

738 recordings), other arrhythmias (O, 2456 recordings) 

and noisy (~, 284 recordings). The test set contains 3,658 

ECG recordings. [1] 
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2.2. Preprocessing 

The purpose of the preprocessing phase was to detect 

and annotate beats and beat clusters in the data. First, 

highly noisy signal segments were identified and rejected. 

This was done by detecting the segments that had 

continuous amplitude changes (more than 10 changes in 

half a second), the segments that had high amplitude 

drifts that did not return to the baseline in 200 ms, and the 

at least 4 s long intervals without any amplitude changes 

that exceeded the estimated noise level. In addition, 

impulse artifacts that were one sample long and over 0.75 

mV high were replaced with linearly interpolated signal 

estimates. 

Beat detection was performed by first transforming the 

ECG trace into a positive valued signal: differences of the 

maximum and minimum signal derivatives in moving a 

100 ms window were low-pass filtered to produce smooth 

positive valued signal with clear peaks during the QRS 

complexes. Threshold value was then defined based on 

the maximum and minimum values in the transformed 

trace, and all the peaks exceeding the threshold value 

were marked as trig points – QRS estimates.  

Next, the signal morphologies of the QRS estimates 

were compared to each other, and beat clusters were 

created from estimates similar to each other. The 

similarity was estimated by first oversampling all the 

QRS estimates, and then finding the maximum cross-

correlations between the oversampled estimates. 

Finally, the beats and the beat clusters were annotated 

to be either Nb, Sb or Vb, or rejected as artifacts (~b). If 

more than 50 % of the beats were found to be similar to 

each other, those beats were classified as Nb. Otherwise, 

the largest two groups were compared and the group that 

had shorter QRS duration (see definition later) was 

selected as a template for normal beats. The rest of the 

beats were then classified based on the following rules 

(see the definitions of the markers in the next chapter): 

 QRS raise time > 0.200 ms  ~b 

 Maximum QRS slope < 2,5 mV / ms OR 

Maximum QRS slope < 0.5 * Maximum QRS 

slope in beats classified as normal  ~b 

 time from previous beat (RR time) was above 85 

% of the average RR time, and the signal 

morphology was had over 85 % correlation with 

the normal template Nb 

 RR time is below 90 % of the average RR time 

AND QRS duration is over 5 % longer than in 

normal template  Vb 

 Beat is already set as Nb AND RR time is below 

70 % of the RR time of the previous beat OR RR 

time is below 80 % of the previous RR time and 

over 120 of the following RR time  Sb 

 QRS duration > 105 ms AND RR time is below 

70 % of the RR time of the previous beat OR RR 

time is below 80 % of the previous RR time and 

over 120 of the following RR time  Vb 

 

2.3. ECG markers  

Max QRS slope is the difference of the maximum and 

the minimum signal derivatives during the 160 ms 

window around the trig point.   

QRS raise time is the duration of monotonic signal 

amplitude increase (or decrease) preceding the ‘R peak’ 

QRS duration is the average time interval from QRS 

onset to QRS offset in normal beats. The onset and offset 

are defined as time instants, when the trace energy 

reaches the saturation level close to the baseline. The 

Trace energy is defined as maximum - minimum of the 

signal in moving 30 ms long window. The saturation 

level is defined as the time instant when trace energy 

starts to drop slower than maximum trace energy / 100 

ms.  

Beat homogeneity is  

                                   
 

                     
,  where total number of 

beats includes pseudobeats that are added to every 3.5 

second time interval (including segments marked as 

noise) without any beat detections, and the nc is the 

number of beat clusters. 

HR entropy is defined as the modified Shannon 

entropy of the words formed by subsequent 3 symbols 

extracted from beat-to-beat heart rate. This definition is 

adopted from Zhou X et al [2]. Entropy was defined for 

all the 30 s intervals in the measurement, and HR entropy 

was the median value of the entropy values. Entropy 

values from the measurements with short duration or with 

low heart rate were scaled so that they were better 

comparable with longer windows: 

  
                 

             
, where k is the number of different 

words, ni the number of ith words, and N´ the total 

number of the words in window, if it exceeds 23 and 23 

otherwise.  

P wave probability is defined as the maximum average 

cross-correlation between the normal (Nb) beats. Cross-

correlations are defined for all the sample points 350 ms 

before the QRS onset with 120 ms long window and 

averaged over all the normal to normal beat pairs.  

PQ estimate is the time interval from the time instant 

of the maximum cross-correlation defined for P wave 

probability above to QRS onset. 

Heart rate (HR) is defined as the median of beat-to-

beat heart rate (60.0/RR time) values. 

RR average difference is the average difference of the 

succeeding RR intervals.  

LF RR ratio is the ratio of low to high frequency 

energy in estimated sinus RR time-series. The time series 

is estimated by linearly interpolating the RR values 

around the ectopic beats. The time series is then filtered 
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with a cut of frequency of 0.2 1/beats, and the energies 

are estimated by signal variances from the filtered and 

from the residual (original – filtered) signals.   

n S beats is the number of beats labelled as Sb. 

n V beats is the number of beats labelled as Vb. 

 

2.3. Rule selection 

During the initial iteration the expert was shown a set 

of ECG samples (15 samples from each of the subsets: A, 

O, N), and ~). Each sample consisted of the ECG trace, 

the corresponding beat detections and beat classifications, 

and the beat-to-beat heart rate time series. The expert was 

then asked to select one classification rule for each subset. 

Each rule was allowed to utilize one or two ECG markers 

that were commonly used or otherwise available in the 

prototype lab.   

During the next iterations the expert was shown a total 

of 56 incorrectly classified samples and was asked to 

either add more rules, or modify the old ones. When 

adding new rules, it was possible to combine them with 

the previous ones with AND or OR statements. The 

samples were selected randomly, and it was possible that 

the same sample was selected more than once. With each 

sample, the expert was shown also the marker values used 

in the already selected classification rules.  

 

3. Results 

The final classification score with the independent test 

set was 73 %, which equalled the score with the training 

set (73 %).  The detailed results can be seen in the table 1, 

which shows the numbers of correctly and incorrectly 

classified samples for all the subgroups in the training set. 

The score is defined as an average of the F1 measures 

from the N, A and O subgroups, and the F1 measures for 

each of the subgroup is defined as 

2 * N corr / (N ref + N pred),    (1) 

where N corr is the number of correctly predicted 

samples, N pred the total number of predictions, and the 

N ref the total number of references in the subgroup. [1] 

 

Table 1. Final classification results in the training set. 
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 N A O ~ Total 

N 4482 12 514 42 5050 

A 88 430 209 18 738 

O 784 63 1578 31 2456 

~ 54 11 87 125 284 

Total 5408 523 2388 209 8528 

To begin with, three classification rules were chosen to 

detect noisy signals, AF cases and other arrhythmias from 

normal beats: 

     beat homogeneity < 0.5  R1.1_~ 

for detecting noisy signals, 

    HR entropy > 0.90   R2.1_A 

for detecting AF cases, and 

    HR < 60 bpm OR HR > 100 bpm    R3.1_O 

for detecting other arrhythmias. The rest of the cases were 

classified as normals. This setup produced a score of   

61.7 % in the training set. 

During the second round the rule R3.1_O was 

modified so that the bradycardial heart rate limit was 

dropped to 50 bpm 

    HR < 50 bpm OR HR > 100 bpm    R3.2_O 

and the rules 

    QRS duration > 120 ms                 R4.2_O 

and 

    RR average difference > 150 ms  R5.2_O 

were added for better identification of other arrhythmias. 

This resulted in a score of 69.3 % in the training set. 

On the third round rule R1.2 was strengthened by 

adjusting the HR entropy limit, and by adding a P wave 

correlation rule for rejecting the cases with detectable P 

wave from the AF set 

    HR entropy > 0.80 AND 

    P wave probability < 0.2   R2.3_A 

For identifying other arrhythmias, the rule 

    n V beats + n S beats > 1                  R6.3_O 

was added. The resulting score was 73.1 %. 

During the fourth round, yet another criterion was 

added to the AF rule in order to separate the cases with 

heavy respiratory arrhythmia: 

    HR entropy > 0.80 AND 

    P wave correlation < 0.2 AND 

    LF RR ratio < 1.0                        R 2.4_A 

and the detection of other arrhythmias was further refined 

by adding rule 

    PQ estimate > 250 ms                          R7.4_O 

for catching some AV block cases. With this rule set, the 

score was 73.2 %. 

During the final round one more rule was added 

    QRS raise time > 70 ms               R8.5_O 

for catching Wolff-Parkinson-White syndrome cases, and 

the final score in the training set was 73.3 %. Table 2 

summarizes the final rules in the classification algorithm, 

and the performance of each of the rules in the training 

set. 
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Table 2. One sided binary tree, where all the rules are 

connected with OR statements. The Rule refers to the rule 

indexes defined above. The N corr is the number of 

correct predictions, N pred the total number of predictions 

and N ref is the total number of corresponding references 

at that phase. Sens is the sensitivity (N corr / N pred) and 

PPV the positive predictive value (N corr / N ref). 

 

Rule N corr N ref N pred Sens PPV 

R1.1_~ 125 284 209 0.44 0.60 

R2.4_A 430 727 523 0.59 0.82 

R3.2_O 542 2362 683 0.23 0.79 

R4.2_O 497 1820 851 0.27 0.58 

R5.2_O 236 1278 420 0.18 0.56 

R6.3_O 290 1042 407 0.28 0.71 

R7.4_O 62 752 139 0.08 0.45 

R8.5_O 12 690 20 0.02 0.6 

N 4434 4434 5276 1 0.84 

 

4. Discussion and Conclusion 

4.1. Rule iteration 

The study proved to be both instructive and thought-

provoking. As the criteria used for the reference 

classification had not been published in high detail, 

several discussions arose about the reasons why some 

signals were classified as they were - especially the 

difference between the groups ‘other arrhythmias’ and 

‘normal’ inspired speculations. There was also 

deliberation on why one case should be classified as AF, 

when another was not - even though the identifiable 

features seemed quite similar in both cases. In particular, 

the collaborating medical experts often raised the need for 

more background information before any actual diagnosis 

could be given 

During the iteration process the importance of the 

accurate beat detection and classification became very 

evident. Several potential classification ideas or features 

were rejected simply because there were no suitable 

markers available or because their implementations were 

known to be unstable -- being prone to produce incorrect 

results with noisy data. In the end it became also quite 

evident the modifications during the last two rounds 

didn't really add any value – the ideas were based on 

single case findings, and even the case was correctly 

classified, it easily resulted new miss-classifications in 

other cases. 

It was also interesting to see that only two rules – the 

R3.2_O and R6.2_O (the heart rate and the number of 

ectopic beats) would have performed almost as well as all 

the six selected rules for other arrhythmias together (score 

71 % vs 73 %). In retrospect those rules seem quite 

obvious, but no clear ectopic beats were visible in the 

selected samples during the first two iterations.   

4.2. Classifier performance 

In the challenge the performance score was clearly 

below the top score of the contest (73 % vs. 83 %), but 

still above that of some of the approaches. For the sake of 

comparison as well as to validate the selected markers, we 

also run some internal tests against RemoteA prototype 

lab machine learning algorithms. In these tests, the 

manually set classifier was defeated with the same 

numbers (83 % vs. 73 % in test / validation set) by a 

neural network that was trained with the same set of 

markers. These numbers suggest that machine learning 

algorithms are the prevalent method for the future, if not 

already for today. However, we do not claim that the 

‘expert system’ presented here is the best a human expert 

can do. The ‘expert system’ of this study was a rather 

simple one and it is safe to say – even though we did not 

exactly evaluate it – that it performs poorer than the 

expert who designed the rules. Furthermore, an 

experienced cardiologist combines information from 

several sources before determining a diagnosis. We 

believe that the machine learning algorithm has to do the 

same before it outperforms the human experts in real life 

– before the algorithm – the artificial intelligence -- is not 

just a tool, but the base of the diagnosis.  
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