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Abstract

It is possible to exploit the predictive capacity of data
collected in intensive care units (ICU) with a high ratio of
missing values. Combining several sources of information,
a considerable number of missing values are generated.
In this manuscript, an alternative approach to impute
this type of data, together with the use of deep learning
techniques to improve the early detection of sepsis in ICU
is proposed. Initially, laboratory tests are separated and
summarized. Then, their most representative information
is extracted by taking codes from an autoencoder. This
information is combined with the rest of the variables
and used to exploit temporal dependencies through long
short-term memory recurrent neural networks. With the
proposed approach our team, WIN-UAB, was ranked in
the position 38/78 with a utility score (defined in the
the PhysioNet/Computing in Cardiology Challenge 2019)
of 0.241 on the full test set. The predictive capacity
of the proposed solution demonstrated the potential of
integrating an alternative approach for imputing variables
with a high ratio of missing values. In terms of
dimensionality reduction, it is possible to reduce 27% of
features through the codes of autoencoders.

1. Introduction

In the era of machine learning, it is possible to capture
and extract knowledge from large amounts of medical data.
The evolution of patients composed of different types of
registers such as images, vital signs, diagnoses, among
others. The follow-up of variables depends on several
factors, such as the type of disease and the determinations
of clinical samples. In this way, a patient will have a
mixture of variables that will rarely be taken at the same
time.

A clear case of this issue happens in intensive care
units (ICU), where vital signs are monitored continuously,
while laboratory tests are taken less frequently. Combining

several sources of information along with possible errors
in measurement, equipment failure, lack of collections, or
determinations that do not match their timestamp, generate
a considerable amount of missing values. On the other
hand, one of the most critical problems in ICU is sepsis
and its challenging early detection [1]. It represents an
epidemiologic problem, with more than 30 million people
who develop it and more than 6 million who die every year
[2]. Although several works have started using machine
learning techniques for the detection of pathologies [3–6],
the most widely way to identify them is through clinical
scores that relate the risk factors with events linearly [7].
However, the applications of other strategies to deal with
a high ratio of missing values and more complex models,
that take advantage of non-linear relationships can improve
the detection of sepsis and be truly useful in the medical
domain.

Thus, defining mechanisms that exploit the predictive
capacity of the data with high ratios of missing values,
together with the temporary dependencies resulting from
the monitoring of the patients in ICU, it is possible to
improve the early detection of pathologies to support the
clinical decisions. From massive data of patients and
their progression in ICU, in this manuscript, it is proposed
to combine a novel mechanism to impute variables with
high ratios of missing values and use deep learning (DL)
techniques for the early detection of sepsis in ICU. In
summary, the main contributions of this manuscript are:
• Impute in novel way variables with a high ratio of
missing values.
• Extract the most relevant information from the data and
reduce its dimensionality through autoencoders.
• Exploit the predictive capacity of temporal evolution
using long short-term memory (LSTM) recurrent neural
networks (RNN).

2. Materials and methods

This work is carried out with a cohort of 40336 patients
admitted to two ICUs from the United States so-called A
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and B. To avoid bias in the results, initially only part of
the A and B data was made public by the organizers of
the Early Prediction of Sepsis from Clinical Data – the
PhysioNet Computing in Cardiology Challenge 2019 [1].
There is a third unit (C) whose data is completely hidden
to test the models. Each patient has 41 variables related
to demographics (6), laboratory tests (26), vital signs (8),
and the target, which refers to the development of sepsis in
the ICU. Each register contains one hour of follow-up of
the patients. The goal of the challenge was to detect sepsis
6 hours before it occurred. For this, Figure 1 shows the
methodology used in this work to solve this problem.
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Figure 1. Work flow for the early prediction of sepsis in
ICU.

Initially, patients are randomly separated for training
and test sets (70-30%). Then, due to the high ratio of
missing values, laboratory tests and vital signs are imputed
in different ways. Finally, DL models are applied to extract
the most relevant information and exploit the temporal
dependencies through AE and LSTM, respectively. Next
are described in detail the necessary steps to extract and
combine information from the available variables using
DL techniques to perform the early detection of sepsis.

2.1. Imputation

Due to the different missing values rates in laboratory
tests and vital signs (see Figure 2), they are imputed
separately. For laboratory tests, a window of ′N ′ hours
is taking and then summarized in one register, that is, the
imputer value for a variable. In the case of having several
values in the window, the imputer shall be the mean of
the variable in the window. For vital signs, considering
they are monitored continuously, they are imputed using
second-order interpolation. In both cases, for patients
without determinations, their variables are imputed using
the mean value of the variable from the training set.

Once the imputation is done, AE is trained to extract
the most important information from the laboratory tests
through its codes and finally are merge with the rest of the
variables to feed an LSTM model.
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Figure 2. Missing values distribution for all the variables.
Dark regions refer to the available data.

2.2. Deep learning models

DL models are based on artificial neural networks
(ANN) with more than one hidden layer. Its goal is
to learn a non-linear model that maps the input xn,
where n = 1, ..., N to its corresponding targets tn. The
error between predicted output and the target is measured
through a cost function. For this work, the mean square
error (MSE) for AE and the binary cross-entropy (C(W))
for LSTM, Eq 1 and Eq 2 respectively, are used.

MSE =
1

N

N∑
i=1

(yi − y′i)
2 (1)

where yi is the target and y′i are the predicted values.

C(W) = −
N∑

n=1

K∑
k=1

tknlog(yk(xn,W)) (2)

where N is the number of samples, K is the number of
classes, yk(xn,W) is the softmax outputs, and tkn the
binary target values.

In both cases, the training is carried out minimizing the
cost function iteratively. It is based on forward and back-
propagation. Initially, the input data is spread across the
network. The weights of each connection are multiplied
by their input and added to a bias term. This product called
activation, aj =

∑
i wjixi + bj , is then passed through a

non-linear function that transforms it to a range of values,
typically between [0, 1] or [-1, 1]. The most commonly
used activation functions are Sigmoid, hyperbolic tangent
(tanh) or rectified linear unit (ReLU). Once these values
reach the output layer of the network, it is decided if the
error is small enough for training. If not, the weights of the
network are updated with the information of the gradient
of the cost function; see Eq 3.

W(t + 1) = W(t)− LR ∗ ∆C(W(t)) (3)

To speed-up the learning process, learning rate (LR),
which controls how fast the error is moving to a local
minimum, is dynamically changed by optimizers. In this
work, adaptative moment estimation (ADAM) is used.
It uses first and second-order momentum to update the
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LR at each iteration. To avoid overfitting, a common
problem on DL models, some techniques such as early
stopping, increasing the dataset, or applying regularizers
are applied. In this work, L2 regularization is used to
penalize the weights that tend to be very large, which avoid
the generalization of the learning model.

That said, we make use of two different DL models.
The AE to extract the essential information of laboratory
tests in a smaller space and the LSTM-RNN to exploit the
temporal evolution of patients in the ICU.

2.2.1. Autoencoders

AE are a type of ANN that works in an unsupervised
way. Its goal is to replicate the input x to the output, x’,
with the smallest error. The input is forced to go through
layers with fewer dimensions, and then the AE has to
reconstruct it. As the MSE error is minimized, the output
of the hidden layers contains essential information with
fewer dimension. The network is composed of two parts,
an encoder function h=f(x) and a decoder that produces the
reconstruction x’=g(h). The encoder function generates
the so-called codes, that best represents the data.
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Figure 3. AE architecture.

2.2.2. Long Short-Term Memory

RNNs are often used to exploit the predictive capacity
of temporal dependencies. However, these usually present
problems of vanishing and exploiting gradients when
dealing with very long sequences [8]. LSTM cells employ
gates to avoid this problem and have become popular
in recent years. Figure 4 shows all the components of
an LSTM cell. Its mechanisms to remember relevant
information are controlled by gates made up of ANNs
with specific activation functions at the output layer. Thus,
each one is responsible for filtering which information is
relevant to the cell. This information is passed to the cell
gate (horizontal line delimited by ct−1 and ct in Figure 4).
Two operations keep the relevant information. The forget
gate, ft, filters the information that the cell must forget.
The second one is responsible for indicating what data are
the new candidates to remember. In this way, the input
gate, it, decides which values will be updated combined
with new candidates, c′t. This combination is added to the
cell state. Finally, the output is a filtered version (tanh) of

the cell state modulated.
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Figure 4. One cell Long Short-Term Memory RNN.

2.3. Metrics

The receiver operating characteristic (ROC) shows how
the sensitivity and specificity of a binary classifier vary in
terms of a detection threshold. The measure derived from
this curve is the area under the ROC (AUROC), which
takes values from 0 to 1, being 0.5 the case of a random
classifier and 1 for the perfect one.

Another metric, used for the challenge is the utility
score [1], which measures how well a model detect
sepsis rewarding the early detection and penalizing the
late/missed detections, this normalized metric takes values
from 0 to 1, being 1 the perfect prediction and 0 the
classifier with no positive predictions.

3. Results

Imputation: Laboratory tests are imputed taking a
window of 6 hours of the variables. Then the 26
laboratory tests feed an AE with one hidden layer with
35 units and latent dimension (length of codes) of 15.
For training the AE, ADAM optimizer with LR=0.001 is
used. After parameter optimization, the minimum MSE
was 0.039. This approach is compared with two classical
imputation methods, i.e., imputation by the mean value
and imputation by the last value.

Prediction: Vital signs, demographics, and information
from the generated codes were merged to feed an LSTM,
with input the evolution of 8 hours of each patient in ICU.
Its target was the development of sepsis 6 hours before it
occurred. The network had three hidden layers with 40, 30,
and 25 units in each one, respectively. ADAM optimizer
with a learning rate of 0.0001 and L2 regularization with
β = 0.0001. For training the LSTM, 5-fold cross-
validation was used. For training purposes as in [9],
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Imputation method AUROC Utility
Mean 0.763 0.303
Forward filling 0.754 0.285
Proposed method 0.788 0.334

Table 1. Performance comparison common imputation
methods vs proposed one in a subset of data (not official
test scores).

Metric Full test set Test A Test B Test C
Utility 0.241 0.344 0.267 -0.247

AUROC - 0.761 0.766 0.762

Table 2. Performance of methodology in hidden test sets
(official test scores).

the extracted model from the fold that contains the best
generalization for the patients was used.

In Table 1, the models using classic imputation have
similar capacity. However, the proposed methodology
has a better predictive capacity with a utility higher than
12% respect to the other imputation methods. Besides, in
terms of dimensionality, using the codes, it was possible
to reduce 27.5% the number of features to feed the LSTM
model.

Finally, in Table 2, it can be appreciated the utility scores
for the different hidden data sets. With these results, our
team called WIN-UAB was ranked in the position 38/78 in
the challenge, the utility ranges for all the teams were in the
range [-0.841, 0.364]. Because the model does not know
data from unit C, it does not generalize well in this data.
However, for data whose part of its structure is known,
generalization is adequate.

4. Conclusion

In this work, it was shown the potential of integrating
and exploiting the predictive capacity of variables with
few determinations. Thus, using the proposed imputation
method together with DL techniques, it was possible to
improve the early prediction of sepsis in ICU. On the other
hand, it was possible to reduce dimensionality for the data
using the codes of AE. The LSTM exploited the temporal
dependencies of the stays of the patients in ICU. The
results obtained in dataset C demonstrate that for unknown
units, it is necessary to integrate a priori information so
that the models can generalize in new ICUs. Finally,
although the proposed mechanism does not present the
best utility score, combining it with other machine learning
approaches may have the potential to improve the early
prediction of sepsis in the ICU and be truly useful in the
clinical domain.
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