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Abstract

We explore the efficacy of modern machine learning
methods for the task of modeling sepsis progression. We
applied a novel imputation and feature selection scheme
based on signal processing technology and our medical
expertise. We compared the performance of several ap-
proaches including neural networks, sparse quantile re-
gression, and baseline classification algorithms such as
random forest and SVMs. Among all the experimented
methods, CNN-LSTM neural network performed the best
with the full test utility score of the challenge being 0.076.
We conclude that the application of neural network, ran-
dom forest, sparse quantile regression, neighborhood al-
gorithms, and naive Bayes classifiers yields superior per-
formance with respect to accuracy, sensitivity, and speci-
ficity. [Team: Sepsis ReSepsion]

1. Introduction

Early detection of Sepsis is vital for effective treatment,
and each hour left untreated increases the chance of death,
especially in the ICU [1}12]. The task of detecting sepsis
early is typically formulated as a multi-channel temporal
classification task. Clinical data is commonly sampled ir-
regularly, thus often requiring a set of hand-crafted prepro-
cessing steps, such as binning, carry-forward imputation,
and rolling means prior to the application of a predictive
model. However, such naive imputation schemes lead to a
loss of data sparsity, which may carry crucial information
in this context. In light of these challenges, we propose to
leverage spline-based interpolation models to imputation
of unobserved samples and normalize the timescale of the
variables.

1.1.  Prior Work

Effective models for early sepsis prediction are desired
since sepsis is a life-threatening condition. According to
[1,/2]], each one-hour delay of treatment of a case leads to
an increase of ~ 7% in the mortality rate. The 2019 Phy-
sioNet Computing in Cardiology (CinC) challenge seeks
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to develop automated methods for early sepsis detection
based on the ICU data.

There is a maturing body of prior work on data-driven
sepsis detection methods applying machine learning algo-
rithms [3L/4]]. In [3] and [4], unique machine learning ap-
proaches have been developed to achieve outstanding sep-
sis prediction. [3]] evaluates two techniques for early pre-
diction of sepsis: a temporal convolutional network, and
a KNN-based approach leveraging Global Alignment Ker-
nels. Our work is also similar to that of [6] who adopts
a neural network classifier augmented with a multi-task
Gaussian process regression layer to interpolate vital signs.

1.2. Contribution

We evaluated several baseline machine learning classi-
fication algorithms and deep learning techniques in this
study. To resolve the issue of missing and imbalanced data,
we developed an imputation and feature selection scheme
for ICU data. In summary, our contributions include

o We proposed a method to handle irregularly sampled
data via a spline-based imputation algorithm.

« We evaluated the performance of a variety of statistical
machine learning algorithms on engineered features

« We proposed a novel deep learning-based video classifi-
cation framework for the task of sepsis prediction

2. Method

In this section we review the technical details of the al-
gorithms we applied to this problem and detail our analysis
and numerical results. We decompose the prediction prob-
lem into stages as in Fig[I] We evaluated several different
classes of predictors on our selected and learned features.
In this section, we will briefly summarize and discuss the
relative performance of each algorithm we applied and ad-
dress their advantages and disadvantages in the context of
sepsis detection.
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Figure 1: Sepsis prediction pipeline for patient ¢

2.1. Formulation

We frame the problem of early detection of sepsis as
a multivariate time series classification problem. Given
a new patient encounter, the goal is to continuously up-
date the predicted probability that the encounter will re-
sult in sepsis, using all available information up until that
time. We follow the general framework from [[6]. Given
a dataset D = {d;}!, consisting of N independent pa-
tient encounters, each patient encounter d;, is described
by a set of covariates and covariate vectors. Baseline co-
variates b; € RB*1 are available on hospital admission
and consist of demographic information including gender
and age. Lab covariates I; € RY*? and vital-sign covari-
ates vi € RY*? are observed online for each time-step
0 <t < T where t = 0 denotes hospital admittance time.
The goal is to predict, for each time ¢ the likelihood that a
particular patient d; has or will contract sepsis.

It is important to note that the full duration time 7' may
vary over patients in the dataset, and that 1; and v; are only
partially observed due to the irregular sampling procedure
employed for each clinical variable. Additionally, each en-
counter in the training set is associated with a binary vec-
tor 0; € {0,1}7 denoting whether or not the patient has
acquired sepsis at each time step. Thus, the data for a
single patient encounter can be summarized as a 4-tuple:
d; = {bi,1;,1;,0;}. For brevity, we adopt the notation
di = {b;,1{,1f, 0t} to denote the observed sequence of
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variables at time ¢.

2.2. Data preprocessing and experimental
setup

The training dataset for the Challenge consisted of
40, 336 subjects [[7]. For each subject, the data included
demographics, vital signs, laboratory values, onset time of
sepsis, and sepsis label. We evaluated several approaches

to preprocess the data. In particular, the prevalence of
missing values and a tailed sequence-length distribution
were the primary issues that affected the design of our pre-
processing pipeline.

We train our method with k-fold cross validation: 80%
of the full dataset, setting aside 10% as a validation set to
select hyperparameters and a final 10% for testing.

2.3. Imputation and normalization

Prior to classification with our machine learning-based
models, we logarithmically transformed continuous vari-
ables to reduce the influence of outliers and z-score-
standardized each column.

To tackle the irregular feature sampling rate, we ap-
plied piecewise cubic Hermite interpolation polynomials
[8]. After normalizing the timescale via interpolation, We
filled remaining missing values - e.g. unobserved columns
- with zeroes corresponding to the standardized empirical
mean post z-score preprocessing.
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Figure 2: An example patient encounter that highlights the
irregular sampling rates of vital sign variables

2.4. Feature Selection

In our machine learning based algorithms, statistical
features are selected by deriving various statistical metrics
that represent different local and global aspects of the un-
derlying signal. We compute sliding-window features for
a variety of different window sizes to capture local and
global descriptors of the ICU data. In total, we compute
18 features including moment statistics about the wave-
form distribution (mean, variance, skewness, kurtosis) as
well as quantile information.

In our neural network methods, different from the afore-
mentioned machine learning methods, all 40 variables are
exploited. The input is the processed data involving impu-
tation and interpolation.

2.5. Classification

In this section, we summarize the details of a sub-
set of methods we applied. We evaluated offline predic-
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tion via a variety of algorithms: Linear Least Squares
(LLSE), Naive Bayes, Support Vector Regression/Ma-
chine (SVR/M), Hidden Markov Models (HMM), Random
Forests, and LS-Gradient Boosting. We adopt LLSE as a
baseline. Furthermore, we experimented with both online-
sparse quantile regression (SQR) and online-Lasso - as on-
line learners.

2.5.1. KNN-GAK

We present a simple, but effective algorithm based on k-
nearest neighbors. Dynamic Time Warping (DTW) [9] is
often applied in conjunction with KNN for time series clas-
sification. This method is known to exhibit highly com-
petitive predictive performance on sequence classification
tasks, and has been previously applied to the sepsis detec-
tion task [5]]. As opposed to many other off-the-shelf time-
sequence classifiers, KNN-DTW can intrinsically handle
variable-length time series.

A major drawback of the DTW distance is that it is not
rigorously a distance and is known not to be negative defi-
nite since it does not satisfy the triangle inequality, and as
a result cannot be used to define a positive-definite kernel,
contradicting most of the mathematical foundations of ker-
nel methods. To resolve this issue, we leverage fast Trian-
gular Global Alignment Kernels (GAKSs) [[10] which have
been shown to be both faster and more efficient in classifi-
cation tasks compared to other kernels based on DTW [[10].
To the best of our knowledge, we are the first to propose
the use of GAK-based KNN for sepsis detection.

We evaluate an extension of KNN-GAK for classifica-
tion of multivariate time series, KNN-GAK-E. We address
the multivariate nature of our setup by computing the GAK
distance kernel (an N x N matrix containing the pairwise
distances between all patients) for each time series chan-
nel separately. Each distance matrix is subsequently used
for training a k-nearest neighbor classifier. A weighted en-
semble is learned by combining all per-channel classifiers,
a multi-channel classifier, and the baseline variables with a
logistic regression predictor on a held out validation set.
In all cases, KNN-GAK-E outperforms KNN-GAK and
KNN-DTW on sepsis detection - achieving an f1 score of
0.58 and AURC of 0.236. We adopt the implementations
of DTW and GAK from TSLearn [[11]] and classification
algorithms from SKLearn [[12]]. The primary limitation of
our neighbor-based methods is their poor scalability with
respect to both memory and runtime, making their appli-
cation for online-realtime prediction of sepsis limited.

2.5.2. Neural Network Algorithms

We also evaluated the performance of a deep learning-
based algorithm. In particular, we constructed a composite
comprised of a cnn-based encoder and Istm-based decoder.
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Figure 3: CNN-LSTM architecture for sepsis detection
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Figure 4: Demonstration of the input to our neural network

This dual-architecture has seen success in sequence pro-
cessing tasks - e.g. video processing [[13]. We provide an
image of our architecture in Figure 3]

Generation of the input for neural networks is accom-
plished in two steps and requires a color map. Figure [
illustrates the inputs of patients diagnosed of sepsis and
not to the neural network model. The first step of the in-
put generation is transformation ¢(x;) = % de-
fined over the entire input. In the second step, the normal-
ized data are reshaped to a squared color-coded image as
hZnorm) = jet(|Tnorm X 99]), in which Z,om, is the
scaled element and jet the color map defined as MATLAB
command jet(100). The size of the image is N x N x 3 for
spatial dimension N.

A central capability of intelligent systems is the ability
to continuously build upon previous related experiences
to enhance the learning of new tasks. Pretraining is one
paradigm that interprets transfer learning as the sharing of
general information about the composition of natural im-
ages - e.g. the typical combinations of low-level visual
primitives such as edges or curves. For trained neural net-
works, such information is typically encoded in the early
layers. We pretrain our CNN encoder on the ImageNet
dataset [14]], and fine tune the LSTM and output layers.

The input to the CNN-LSTM network is a stack of im-
ages of dimension 80x80x 3, with each image correspond-
ing to a 12-hour period of time. The output of the network
is the probability of the occurrence of sepsis within this
timeframe. Our encoder is a CNN with three 5 x 5 x 1
filters for each color channel followed by the operations of
batch normalization and ReLU. The output of our encoder
is a single 19200 x 1 vector representation of a 12-hour
period. Our decoder is composed of a single layer LSTM
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Table 1: Performance of Sepsis Detection Classifiers

Classifier Accuracy | Sensitivity | Specificity
Naive Bayes 84% 25% 90%
Random Forest 91% 9% 99%
SQR 60% 66% 58%
XGboost, SVM
GP, SGD ~ 90% <5% ~ 99%
LR, HMM
KNN-DTW 46% 71% 29%
KNN-GAK 48% 74% 31%
KNN-GAK-E 69% 62% 1%
CNN-LSTM + 90% 35% 95%
Transfer
CNN-LSTM 95% 40% 75%

containing 128 hidden units. Classification is performed
with a single-layer MLP with softmax activation.

2.6. Evaluation

We evaluate the performance of our algorithms with a
variety of metrics including accuracy, sensitivity, speci-
ficity of final and intermediate predictions. Furthermore,
the challenge score and running time are considered.

3. Results and Analysis

We conclude that neural network, random forest, sparse
quantile regression, naive Bayes, and the neighborhood
methods offer superior performance with respect to accu-
racy, sensitivity, and specificity. Table |l|displays the clas-
sification performance of each classifier. Random forests
offer deceptively strong performance on average in com-
parison to the other algorithms, however the sensitivity is
quite low. In contrast, sparse quantile regression outper-
forms other algorithms for sepsis detection and is robust
to over fitting. Naive Bayes demonstrates balanced perfor-
mance. Other classifiers show reduced capability for sepsis
detection with < 5% sensitivity.

3.1.  Challenge Scores
Our best challenge score is 0.076, which is achieved
with our LSTM-CNN neural network. [Team: Sepsis Re-

Sepsion]

4. Conclusion and Future Work

Our neural network is effective at learning complex pat-
terns implicit in clinical data and associating them with

sepsis, outperforming our baselines by a significant mar-
gin. Our future work will include a more in-depth explo-
ration of the developed techniques and integration of addi-
tional engineered features to this task.
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