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Abstract 

Background: Sepsis is the leading cause of in-hospital 
deaths, and it is one of the costliest complications to treat. 
Detection of sepsis is complicated and not yet efficient. 
Each hour of delay in treatment for a septic patient results 
in a 4-8% increase in chance of mortality.  

Method: The dataset provided consists of files that 
contain hourly parameter measurements for over 40,000 
unique patients. Due to the complex nature of this 
challenge problem, a model of similar complexity was 
necessary. A boosted random forest ensemble was chosen 
and developed in MATLAB in hopes of producing the best 
results for this challenge. The provided data was time 
padded for 8 additional hours’ worth of data, 10-fold 
cross-validated, and imputed with previous data. Many 
ensemble methods were tested with Random Under-
Sampling Boosting performing the best. For this model, the 
hyper-parameters were optimized via a grid search to find 
an optimal model.  

Results: Using the optimized hyper-parameters along 
with the correct pre-processing techniques, a 10-fold 
average utility score of 0.421 was achieved on the training 
sets A and B combined. We participated in Physionet 
Challenge under the name SOS: Searching of Sepsis and 
the utility score on full test set is 0.314. Our official rank 
is #14.  

 
 
 

1. Introduction 

Sepsis is a life-threatening condition that occurs when a 
patient’s body initiates a dysregulated response to infection 
that can cause tissue damage, organ failure, and even death 
[1-4]. Sepsis can be difficult to diagnose because the 
manifestation of symptoms varies from patient to patient, 
and many times the early signs of sepsis are similar to those 
of other conditions [2, 3].  

Globally, it is estimated that nearly 30 million people 
suffer from sepsis each year and 6 million of these cases 
result in death [3].  The CDC estimates that sepsis claims 

the lives of 270,000 of the 1.7 million adults in the US who 
develop the condition each year [2].  This corresponds with 
a mortality rate of over 15%. For patients who develop 
septic shock, the associated mortality rate is higher than 
40% [1].  A recent study found that sepsis is the costliest 
disease state in the US, with total expenditures of $24 
billion [5]. 

It is a widely accepted notion that early detection of 
sepsis significantly improves patient prognosis and chance 
of survival [1, 3-5].  Each hour of delay in treatment, 
especially antibiotic administration, for a septic patient 
results in a 4-8% increase in mortality [6]. 

The 2019 PhysioNet problem challenges participants to 
use physiological data to detect sepsis six hours earlier than 
the clinical prediction of sepsis [7].  Sepsis is defined, 
according to the Sepsis-3 guidelines, as clinical suspicion 
of infection via ordering of blood cultures IV antibiotics 
and a two-point increase in SOFA score [1].  

 
2. Data 

The PhysioNet datasets were provided as a set of pipe 
separated value (.PSV) files. Each patient has a single PSV 
file, with there being a total of 40,336 patients. Each row 
contains hourly entries of the 40 given parameters. Missing 
parameter values are indicated with a NaN entry.  The last 
column is the sepsis label, which is 0 for a negative sepsis 
diagnosis and 1 for a positive sepsis diagnosis. Sepsis 
patients make up about 10% of the total patient data given, 
and the timestamps that indicate sepsis make up around 
3%. The data is highly unbalanced, which adds to the 
difficulty of finding a good model. 

 
3. Methods 

3.1. Pre-processing 

Feature Selection has been shown to help solve the data 
dimensionality problem. First, we looked for features that 
had severely missing data. Then, we did a literature survey 
on each parameter to determine its relevance (Tab. 1). 
Considering the availability and relevance of each 
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parameter we initially narrowed the feature size from 40 
down to 24. Later, we tested the reduced feature size 
against the original for each model. We found that in our 
final model, it performs significantly better with all 40 
features. We plan on doing further analysis with the 
literature survey that was conducted. 

 
Table 1. Relevant parameters for sepsis prediction.  

 
 
Imputation is an important step in pre-processing. We 

combed through each patient’s data and replaced any 
missing data points with the nearest previous value. If all 
the data was missing for a feature, we tried replacing the 
remaining missing data with zero. This imputation method 
yielded the best results in terms of utility score. 

After replacing all the missing data, the data had to be 
split for cross-validation purposes. We created 10 equal 
folds of data based on the patient size (4033 patients per 
fold). Nine of these folds were used to train the model 
while the remaining fold was used for testing. In order to 
accurately evaluate a model, we would train and test it 10 
times with the test set being a different fold each time. 
When submitting for official scoring, the results were 
nearly identical to the 10-fold average we would calculate.  

Due to the highly unbalanced nature of the dataset, we 
tried balancing the data samples. We concatenated all the 
patients’ data together. Then, we separated the timestamps 
labeled sepsis from non-sepsis. We noticed the size of the 
non-sepsis dataset was 54 times larger than the sepsis 
dataset. We created 54 fully-balanced datasets and used 
them to train the models that we tested. This is similar to 
oversampling the data. For a few models this greatly 
improved the utility score, but for the final model it was 
not necessary. This will be discussed in more detail later in 
the paper. 

One of the greatest breakthroughs we had with pre-
processing was made by padding the data with the previous 
time-stamps’ data. This was done by looking at X previous 
timestamps (rows) and appending those to the current row 
of data that was being fed into the model. If X=8, then the 
current timestamp would have (8+1)*40 features. In this 
example, the first 8 timestamps would not have enough 
previous data to add. Therefore in these cases, zeros were 
appended to fill in for the missing data. For example, the 
first row would have its original data plus 8*40 zeroes 
appended onto it. The third row would have the original, 

then the second, then the first rows followed by 6*40 
zeroes. This method yielded a solid 2% increase in utility 
score. 

 
3.2. Model Selection 

Machine learning methods have been widely used in a 
variety of clinical and biomedical problems [8-17]. We 
tried a few different types of machine learning models. 
First, we tried using an Artificial Neural Network. This 
model gave us a Utility Score of 0.31, but we could not 
further improve it. Next, we tried using a single decision 
tree. With the optimal parameters, it, too gave us a 
maximum Utility Score of 0.31. Finally, we came across 
Random Forest Ensembles. There are many different 
methods to creating a random forest. We explored a few of 
those methods. 

It should be noted that we created these models on 
Matlab version R2019a. The base function we used was 
“fitcensemble”. From there we had to decided which 
method to use. We tried all available built-in ensemble 
methods and chose the best three based on the literature 
and documentation available to us: Bag, AdaBoostM1, and 
RUSBoost. These 3 methods were tested in great detail. 
Bag and AdaBoostM1 had to have the data be balanced to 
perform well, but RUSBoost has a built-in boosting 
algorithm that pseudo balances the data itself. We 
eventually had to make a decision on which model to go 
forward with, because we could not continue with all three 
due to time constraints. RUSBoost was ultimately decided 
upon due to it the nature of the algorithm and the good 
Utility Scores it gave. 

 
3.3. Model Explanation 

A random forest ensemble is essentially a group of 
simple decision trees that each take in the data and make a 
prediction. These decision trees are made with samples of 
the overall population. Each decision tree starts with a root 
node and is split based on some decision into 2 other nodes 
for binary trees. This process is continued until there is no 
more loss in entropy. The final layer consists of the 
predictions which are called leaves. The model takes all the 
predictions and does a majority vote to determine the final 
prediction. RUSBoost refers to Random Under-Sampling 
Boosting. Boosting takes the information from each 
decision tree and uses that to help create the next tree. 
Boosting attempts to represent every nuance in the data so 
it can have an accurate depiction of the bigger picture. 
Random Under-Sampling refers to taking random samples 
of the data to create each tree where each sample is 
balanced because the algorithm under-samples the 
majority class to match the size of the minority class. There 
is one other state-of-the-art algorithm on the market that 
works in a similar way. This is Synthetic Minority Over-
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Sampling Technique (SMOTE). This algorithm does the 
opposite of RUS by over-sampling instead of under-
sampling. Over-sampling makes more synthetic data of the 
minority class to try to balance the dataset. SMOTE was 
combined with AdaBoostM1 to create SMOTEBoost. The 
results using SMOTEBoost were compared to RUSBoost, 
and for this specific problem, RUSBoost performed 
slightly better. 

 
3.4. Model Training 

As previously stated, the model was trained with 9 folds 
of 36,297 patients’ data. Using fitcensemble with 
RUSBoost, there were a few parameters that could be 
changed. Three were very important: the number of 
learners (simple decision trees), the max number of splits 
allowed, and the learning rate. Increasing the number of 
trees resulted in slower training time but usually correlated 
with a higher Utility Score. We noticed a plateau around 
700 learners with the default 10 max number of splits. 
Raising the max number of splits allowed each simple 
learner to become more complex. We noticed that using a 
higher max split was beneficial when the number of trees 
was lower, and changing max splits at a higher number of 
learners did not affect the score significantly. The learning 
rate was adjusted a few times to gauge the effect on the 
score. Eventually, it was deemed that the safest place to 
leave it was at a value of 1.  

 
3.5. Post-processing 

The biggest post-processing done was parameter 
optimization. There is a slew of parameter optimization 
techniques available. We decided to do a grid search and 
try to find a local maximum. From there, we could make 
the grid finer and hopefully find the best score with the 
current model structure. Earlier it was stated that the utility 
score started to plateau around 700 learners. Unfortunately, 
when submitting a model of that size, it was never able to 
finish in the allotted time of 24 hours. Eventually, we 
discovered that similar results could be obtained with less 
learners if the max splits were increased. We set up the grid 
search to scan through 50 to 300 learner with a step of 25 
as well as adjusting the max splits from 10 to 200 using a 
step of 10. The amount of time padding was shown to alter 
results, so it was stepped through the range of 6 to 14 with 
a step of 2. For each of these conditions, 10 folds were 
calculated and averaged to make sure we were getting 
accurate results.  

Another post-processing method that has was tested is 
called forced conformity. This method looks at the first 
positive sepsis prediction and forces all the latter labels to 
conform to a positive label as well. This was implemented 
in hopes of not having a few accidental false negatives that 
would drastically reduce our utility score. This method was 

tested on several different iterations of our model but was 
ultimately left out due to it consistently lowering our 
Utility Score. 

 
4. Results 

As stated earlier, the results from RUSBoost were found 
to be the best. The best score that was achieved was using 
700 learners at a max split of 10 with 8 padding. This gave 
us a Utility Score of about 0.42. Unfortunately, this model 
took too long to test and could not be used on this 
challenge. Using parameter search, we found a local 
maximum at 300 learners with 45 max splits and 10 pad 
that yielded a Utility Score of 0.4095. When submitting, 
this model could not finish on time either. The best model 
that we could submit was 150 learners with 50 max split 
and 8 pad. This model gave us a Utility Score of 0.399. 
This model yielded a prediction accuracy of 87.7% based 
on timestamps. A confusion matrix is shown (Tab. 2) to 
represent the accuracy of the model on predicting patients.  

 
Table 2. Confusion table: the rows represent the actual 
number of sepsis patients and the columns represent the 
predicted number of sepsis patients. It can be seen that the 
overall accuracy (67.7%) is less than the timestamp 
accuracy (87.7%). 

 
 
We participated in Physionet Challenge under the name 
SOS: Searching of Sepsis and the utility score on full test 
set is 0.314. Our official rank is #14.  
 

5. Discussion 

When analyzing the predictions, it was seen that the 
biggest penalty to our utility score was due to too many 
false negatives. For patients who do not develop sepsis 
until after 24 hours, the model captured the change to 
sepsis quite well. However, for patients who developed 
sepsis early on in their ICU stay, the model would 
consistently classify them as non-septic. This problem is 
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likely due to the fact that the model would rely too heavily 
on the ICU LOS parameter. Looking at the trees being 
created, the first split usually was based on this parameter 
and was splitting around the value of 25. In the future, we 
want to implement a 2 model approach to combat this 
issue. One model would not use ICU LOS to make its 
predictions and this model would be tested on the short 
LOS patients while a second model similar to the current 
one would predict on the rest of the patients. 

Although the final Utility Score was not the highest in 
the competition, we feel its score still reflects the ability to 
capture changes in a patient’s physiology that relates to 
sepsis occurrence. This is especially true with the patients 
who had longer hospitalizations. 
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