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Abstract

This paper aims to present a methodology for sepsis pre-
diction from clinical time-series data. Sepsis is one of the
most threatening states which could occur while treating
a patient at the intensive care unit. Therefore its predic-
tion could significantly improve the quality of the patient
treatment.

In this work, we address the problem of sepsis prediction
with Long Short-Term Memory (LSTM) network with spe-
cialized deep architecture with residual connections. The
output of the network is sepsis prediction score at each
point in time.

Feature normalization into the fixed range of values is
applied including replacing missing values with numerical
representation from outside the normalized range. There-
fore, the LSTM network is able to include missing values in
the learning process. Also, the rarity of sepsis occurrence
in the provided dataset is a challenging problem. This
problem is addressed by the application of dice loss pro-
viding automatically weighted classes by the occurrence of
the feature.

The proposed method leads to 0.281 normalized util-
ity score on the full test set as the best official Phys-
ioNet/Computing in Cardiology (CinC) Challenge 2019
entry of ECGuru10 team.

1. Introduction

Sepsis is a longterm chronic critical illness often asso-
ciated with prolonged inflammation, immune suppression,
organ injury and lean tissue wasting [1]. Organ dysfunc-
tion can be identified as an acute change in total SOFA
score ≥ 2 points consequent to the infection [2]. It can lead
to a life-threatening organ dysfunction caused by a dysreg-
ulated host response to infection. Definitions of sepsis and
septic shock [2] differentiated sepsis from uncomplicated
infection. Sepsis is the primary cause of death from infec-
tion, especially if not recognized and treated promptly. Its
recognition mandates urgent attention

Early prediction of such a state at intensive care units
(ICUs) could be crucial for patient treatment.

Machine learning methods are a field of interest in criti-
cal care and sepsis detection [3]. Variety of machine learn-
ing methods have been used including support vector ma-
chines [3], hidden Markov models [4], XGBoost [5], ran-
dom forest [6], etc.

Currently, recurrent reural networks (RNN) and espe-
cially LSTM networks [7] are a very powerful tool, which
is wildly used in many tasks, where input is a sequence
with variable length, including signal classification [8],
natural language processing [9], etc. In [10] authors mod-
eled clinical time-series with multi-output Gaussian pro-
cesses and fed latent variables into a RNN to classify the
patient as septic or non-septic. In [11] authors combined
static information extracted from information about patient
with fully connected (FC) network and dynamic informa-
tion extracted from time-series with a combination of con-
volutional neural network and LSTM. They used this for
sepsis prediction, where the whole network is end-to-end
differentiable.

LSTM network deals promptly with several problems
that occurred while performing the analysis. Sepsis predic-
tion task is a prediction from the signal of variable length
with the use of only previous time points. RNN are per-
fectly suitable for this type of task. It also effectively cap-
tures the underlying temporal structure of time-series.

In this work, we address the problem of sepsis predic-
tion with LSTM network with specialized deep architec-
ture with residual connections. Proposed solution deals
with two main obstacles: a high portion of missing values
in the provided dataset and highly imbalanced dataset.

2. Methods

2.1. Missing values problem

Missing values are one of the most challenging prob-
lems considering clinical time-series data. There are sev-
eral standard approaches of how to handle missing values.
The most simple one is replacement with constant value
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e.g. zero or average. Another possibility is to use the lat-
est known value. However, standard interpolation meth-
ods cannot be used, due to their non-causality (future value
cannot be used for calculation of current value). More ad-
vanced possibilities for prediction of missing values are
regression techniques e.g. usage of LSTM network [12].
A different approach is the use of the prediction technique,
which can deal with missing values. The example of such
technique is naive Bayes classifier [13], which can take
into account known values only; however, this is a simple
technique, which did not achieve satisfying results. Since
LSTM networks are the main topic of this paper, men-
tioned LSTM network method was applied, but did not
reach any reasonable results. The best result, which was
achieved with this method, was the replacement of missing
values with nothing more accurate than the average value
in most of the cases.

In this paper, feature normalization into the fixed range
of values is applied including the replacement of missing
values with numerical representation from outside the nor-
malized range. Specifically, values of every feature were
fit into the range 1, 5 and missing values were replaced by
0. Resulting values y are then

y =

{
0 if x is missing
4(x−xmin)
xmax−xmin

+ 1 otherwise
(1)

where x is the original value, xmin and xmax are mini-
mum and maximum of the specific feature over all the pa-
tients and all the time points, respectively. This approach
is motivated by the expectation that the network can rec-
ognize zeros as non-informative and learn to ignore them.

When preprocessing data, it was noticed that for some
features there are values not corresponding to physiolog-
ical possibilities of the human body. In some cases, the
recorded values were significantly (multiple-times) lower
(or higher) than the lowest (or the highest) known value
from the physiological point of view. According to the
consultation with medical expert, all values outside the
specified range were replaced by the range limit values.
The normalization was performed in the same way as in
the previous case (eq. 1). Clinical features, which were
mostly represented by missing values or according to the
medical expert did not provide any important information,
were removed. However, this data preprocessing did not
provide any improvement. Even though it is believed that
there should not be present data which do not make sense
from the physiological view.

2.2. Class imbalance problem

The second important problem toward clinical time-
series data is the class imbalance. The sepsis occurs at
1.80 % of all time points across all the patients. The per-

centage of patients diagnosed as septic is 7.27 %. A low
number of representatives of sepsis class causes trouble
in most of the standard prediction techniques, leading to
the prediction of non-sepsis class in all cases. This ob-
stacle can be overcome by oversampling of the rarer (sep-
tic) class or the introduction of higher weights for samples
from rarer class. In the case of neural networks, the stan-
dard approach is the introduction of weighted loss function
such as weighed cross-entropy or Generalized Dice Loss
(GDL)[14].

In this paper, the class imbalance problem was dealt
with by specialized lost function, which can automatically
set the weights appropriately for each of the classes [15],
which is for two classes defined as

GDL = 1− 2

∑2
i=1 wl

∑
n rlnpln∑2

i=1 wl

∑
n rln + pln

(2)

where wl = 1/(
∑N

n=1 rln)
2, l is an index of the class, n

is an index over time and batch. rln is value of one-hot
encoded ground truth and pln is score output of network
(output of softmax layer).

2.3. Network architecture and implemen-
tation

The proposed network consists of 7 blocks, where each
consist of LSTM layer followed by 3 fully connected lay-
ers. Inspired by ResNet [16] and DenseNet [17], we add
also residual skip connections, where the input of every
block is a concatenation of output of the previous block,
skip over the previous block and network input, as is shown
on Fig. 1. Every fully connected block is followed by
ReLU and dropout layer (with 0.5 drop probability). In-
puts to our network are all previous time points before
the evaluated time point. Output is a prediction score of
sepsis/non-sepsis at evaluated time point. Output softmax
layer ensures the mapping of the output values into the
range 0-1.

2.4. Threshold adjustment

Proposed loss function does not guarantee that best
threshold of output score (with respect to the utility score)
will be 0.5. The best threshold was selected with a grid
search, where utility measure was maximized for the vali-
dation set.

2.5. Training details and implementation

Network was trained with Adam optimizer [18] with
β1 = 0.9, β2 = 0.999) and learning rate 0.0001 de-
creasing to 1/10 every 15 epochs. Additionally L2 weight
regularization with factor 10−8 and gradient clipping [19]
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Figure 1. One block of proposed network. Numbers refer
to number of neurons. Whole network consist of 7 blocks.

were used. During training session all time points were
used. Batch 64 was used, in case of different signal length,
signal was padded with zeros. Matlab 2019a with Deep
Learning Toolbox was used for network implementation
and training of proposed network. Code is available at
https://github.com/ECGuru10/PhysioNetCHallenge2019.

3. Results and Discussion

Clinical time-series data for sepsis prediction was pro-
vided by the PhysioNet/Computing in Cardiology (CinC)
Challenge 2019 [20]. The dataset contains data from
40336 patients, where 40 clinical features were recorded
for every patient by 1-hour interval. The training dataset
was randomly divided into internal training (90 %) and
validation (10 %) sets. The training set was used for net-
work training. The validation set was used for threshold
adjustment and evaluation. Sepsis labels are shifted by 6
hours, thus algorithm should predict sepsis 6 hours before
it starts. Results were evaluated in terms of dice coefficient
and normalized utility (official challenge metric).

Final best model uses 7 blocks, with normaliza-
tion/missing value replacement from Eq. 1. This leads to
0.350 utility and 0.131 dice on our validation set, and 0.372
utility on challenge official partial test set A. Additionally,
our model was evaluated for different preprocessing meth-
ods, model settings and model sizes.

Our method for replacement of missing values (Eq. 1),

Table 1. Results for different preprocessing and network
setting.

Normalized
Utility Dice

Pr
ep

ro
c. Last known value/average

0.315 0.119

Normalization (Eq. 1)
0.350 0.131

Physiological correction
+ Normalization (Eq. 1) 0.349 0.120

N
et

w
or

k w/o Dropout w/o skip con. 0.336 0.123
w/ Dropout w/o skip con. 0.297 0.111
w/o Dropout w/ skip con. 0.327 0.121
w/ Dropout w/ skip con. 0.350 0.131

achieved significantly better results than replacement by
last known value or by average from the whole training set
if there is no previous known value for current signal (see
Tab. 1). This comparison was performed for the network
with dropout and skip connections and with 7 blocks. Pre-
diction process was applied on both sets of data - with and
without physiological correction (see section 2.1). Since
the correction did not provide improvement in the out-
come, the original data set was used to gain the final result
in the challenge.

The improvement achieved by residual connections and
dropout was evaluated. The very similar utility was
achieved by network with and without skip connections,
when dropout was not used. However, use of the network
with both dropout and skip connections leads to significant
improvement. This comparison was performed for normal-
ization by Eg. 1 and for the network with 7 blocks.

Additionally, the performance was tested for a different
number of blocks (see Tab. 2). The utility is increasing
with the number of blocks until the number of 5, where
it saturates. Using more blocks did not provide any ad-
ditional improvement. This comparison was performed
for normalization by Eq. 1 and for the network with both
dropout and skip connections.

Table 2. Effect of blocks number on the prediction perfor-
mance of the network.

Normalized
Utility Dice

N
um

.o
fb

lo
ck

s 1 block 0.328 0.112
2 blocks 0.335 0.121
3 blocks 0.342 0.117
4 blocks 0.341 0.130
5 blocks 0.350 0.133
6 blocks 0.349 0.129
7 blocks 0.350 0.131
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4. Conclusions

The use of the RNN (LSTM network) is perfectly suit-
able for this type of task. Proposed method addressed the
missing values problem effectively by simple normaliza-
tion and replacing missing values with numerical represen-
tation from outside the normalized range. The network can
recognize replaced values as non-informative and there-
fore ignore them. The rarity of sepsis occurrence in the
provided dataset is addressed by the application of dice
loss, which provides automatically weighted classes by the
occurrence of the feature. The final model consists of a
newly designed block, which is repeated multiple-times.
There are three inputs to each block - output of the previ-
ous block, skip connection over the previous block and the
initial network input.

The proposed method leads to 0.281 normalized utility
score on full test set (0.372 on test set A) as the best offi-
cial PhysioNet/Computing in Cardiology(CinC) Challenge
2019 entry of the ECGuru10 team.

References

[1] Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turn-
bull IR, Vincent JL. Sepsis and septic shock. Nature reviews
Disease primers 2016;2:16045.

[2] Singer M, Deutschman CS, Seymour CW, Shankar-Hari M,
Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD,
Coopersmith CM, et al. The third international consen-
sus definitions for sepsis and septic shock (sepsis-3). Jama
2016;315(8):801–810.

[3] Vellido A, Ribas V, Morales C, Sanmartı́n AR, Rodrı́guez
JCR. Machine learning in critical care: state-of-the-art and
a sepsis case study. Biomedical engineering online 2018;
17(1):135.

[4] Ghosh S, Li J, Cao L, Ramamohanarao K. Septic shock
prediction for icu patients via coupled hmm walking on se-
quential contrast patterns. Journal of biomedical informat-
ics 2017;66:19–31.

[5] Barton C, Chettipally U, Zhou Y, Jiang Z, Lynn-Palevsky
A, Le S, Calvert J, Das R. Evaluation of a machine learning
algorithm for up to 48-hour advance prediction of sepsis
using six vital signs. Computers in biology and medicine
2019;109:79–84.

[6] Darwiche A, Mukherjee S. Machine learning methods for
septic shock prediction. In Proceedings of the 2018 Inter-
national Conference on Artificial Intelligence and Virtual
Reality. ACM, 2018; 104–110.

[7] Greff K, Srivastava RK, Koutnı́k J, Steunebrink BR,
Schmidhuber J. Lstm: A search space odyssey. IEEE
transactions on neural networks and learning systems 2016;
28(10):2222–2232.

[8] Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent
neural network models for early detection of heart failure
onset. Journal of the American Medical Informatics Asso-
ciation 2016;24(2):361–370.

[9] Liu P, Qiu X, Huang X. Recurrent neural network for
text classification with multi-task learning. arXiv preprint
arXiv160505101 2016;.

[10] Futoma J, Hariharan S, Sendak M, Brajer N, Clement M,
Bedoya A, O’Brien C, Heller K. An improved multi-output
gaussian process rnn with real-time validation for early sep-
sis detection. arXiv preprint arXiv170805894 2017;.

[11] Lin C, Zhangy Y, Ivy J, Capan M, Arnold R, Huddle-
ston JM, Chi M. Early diagnosis and prediction of sepsis
shock by combining static and dynamic information using
convolutional-lstm. In 2018 IEEE International Conference
on Healthcare Informatics (ICHI). IEEE, 2018; 219–228.

[12] Verma H, Kumar S. An accurate missing data prediction
method using lstm based deep learning for health care. In
Proceedings of the 20th International Conference on Dis-
tributed Computing and Networking. ACM, 2019; 371–
376.

[13] Rish I, et al. An empirical study of the naive bayes classifier.
In IJCAI 2001 workshop on empirical methods in artificial
intelligence, volume 3. 2001; 41–46.

[14] Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ.
Generalised dice overlap as a deep learning loss function
for highly unbalanced segmentations. In Deep learning in
medical image analysis and multimodal learning for clinical
decision support. Springer, 2017; 240–248.

[15] Crum WR, Camara O, Hill DL. Generalized overlap
measures for evaluation and validation in medical image
analysis. IEEE transactions on medical imaging 2006;
25(11):1451–1461.

[16] He K, Zhang X, Ren S, Sun J. Deep residual learning for
image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016; 770–778.

[17] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ.
Densely connected convolutional networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition. 2017; 4700–4708.

[18] Kingma DP, Ba J. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv14126980 2014;.

[19] Pascanu R, Mikolov T, Bengio Y. On the difficulty of train-
ing recurrent neural networks. In International conference
on machine learning. 2013; 1310–1318.

[20] Reyna M, Josef C, Jeter R, Shashikumar S, Moody B,
Sharma A, Nemati S, Clifford G. Early prediction of sepsis
from clinical data: the physionet/computing in cardiology
challenge 2019. Critical Care Medicine 2019 2019;.

Address for correspondence:

Petra Novotna
Department of Biomedical Engineering,
Faculty of Electrical Engineering and Communication,
Brno University of Technology,
Technicka 12, 616 00 Brno, Czech Republic.
novotnap@vutbr.cz

Page 4


