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Abstract 

In this study, we developed an automatic algorithm 

that predicts onset of sepsis using hourly clinical data 

from patients in an ICU setting. We participated as team 

“Sepsyd” in the PhysioNet/Computing in Cardiology 

2019 Challenge and were ranked 2nd with an official final 

test score of 0.345. Our developed system processed all 

the clinical input variables provided in the Challenge. We 

first applied a preprocessing step that applied a log 

transform to selected variables and imputed missing 

values of the variables. After preprocessing, a feature set 

was formed including the 40 preprocessed variables, 34 

missing value flags, the changes in the time series in the 

vital signs variables and the variance of the vital signs 

variables. Following this, the features of the present hour 

were combined with the features of the past 5 to 8 hours of 

data. These combined features were then processed with a 

gradient boosting tree classifier to estimate the likelihood 

of a positive sepsis classification at each time step. We 

compared the utility score of a number of different system 

configurations using 3-fold cross validation on the 

training data. Our best system, assessed on the test set, 

used a maximum tree depth of 4, a look back of 5 hours, 

and processed the clinical input variables combined with 

the missing value flags.  

1. Introduction 

Sepsis is a critical health syndrome caused by infection 

which results in pathologic, physiologic, and biochemical 

abnormalities [1], [2]. It is a prevalent issue for critically 

ill patients, with a death rate greater than the combined 

breast and bowel cancer deaths [3]. A mortality rate of 

about 50% is reported in patients as a result of severe 

sepsis and sepsis shock, with average costs of about 

US$17B annually in the USA associated with sepsis [4]. 

Early detection of the syndrome affects the treatment 

procedure, potentially reducing the associated costs on 

healthcare system [3], [5] and is a vital key to improving 

the survival of sepsis patients. Developing automated 

systems are a key enabler for early detection [3], [6].  

The clinical protocol for identifying sepsis involves 

detection of two or more of the following symptoms: body 

temperature outside of the range of 36-38℃, heart rate 

(>90bpm) and respiratory rate (>20 breath/min or PaCO2 

(<32mmHg) and blood cell count (>12,000 or <4000 

cells/mm3) or immature band forms (>10%) [3]. 

Automated systems for early diagnosis of sepsis using 

clinical- and laboratory-based data have been widely 

studied in the literature [7]–[11]. Through development of 

electronic health records and electronic surveillance 

systems for healthcare systems, a number of studies have 

evaluated models for automated sepsis detection and their 

effectiveness [7], [8], [10], [12], [13]. The studies mostly 

proposed automated systems of evaluating clinical data for 

prediction of sepsis using different machine learning 

algorithms such as support vector machine, k-nearest 

neighbor, decision trees, regression trees, random forests, 

logistic regression and lazy Bayesian rules  [7], [10]–[12].  

This study aimed to predict sepsis onset using a model 

developed from clinical data provided by the PhysioNet 

Computing in Cardiology Challenge 2019 [14]. We 

examined the performance of different features and 

classifiers processing the clinical data and selected a high 

performing model for final evaluation on the unseen test 

data. In our proposed algorithm, we provide a model that 

uses all the clinical input data after preprocessing. The 

feature set contains the clinical data, as well as missing 

value flags, and the changes and variance of the vital sign 

variables. A gradient boosting classifier was used to 

estimate the likelihood of a sepsis at each time step. 

Weighted cross-entropy was used as the loss function. The 

clinical data and the different methods used for signal 

processing with the results and discussion are provided in 

the following sections. 

2. Input Data 

The dataset was provided by the PhysioNet/ 

Computing in Cardiology Challenge 2019 [14]. It 

comprised of clinical data from ICU patients of three 

hospitals. The open access training data and associated 

sepsis labelling was from two hospitals (A and B) while 

the hidden test data contained data from the three hospitals 

(A, B and C). The clinical data included 8 vital signs, 26 

laboratory and 6 demographic values. A timestamp of 

clinical data was recorded every hour but not all tests were 
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performed every hour. When a test was not performed its 

missing value was recorded as ‘NaN’. A sepsis label is 

provided at every hour timestamp. For patients who 

developed sepsis, the label was ’0’ up to 6 hours before 

sepsis and ‘1’ otherwise. The details of the dataset can be 

found in the Challenge overview paper [14].   

3. Methods 

Figure 1 depicts our automatic system for sepsis 

prediction. It processes the clinical input data after 

preprocessing using methods including log-transformation 

of selected raw feature values and imputation of missing 

values. After preprocessing, a feature set is created for 

each hour of data. The feature set contained the 

preprocessed 40 variables from the clinical data, as well as 

34 missing values flags, the difference of the vital signs 

variables from previous time steps and variance over the 

past six-hour period of the vital signs variables. The 

feature set of the present hour and the past six hours were 

then combined and passed to a gradient boosted Decision 

Tree classifier model. A weighted cross-entropy loss 

function was used. Our system outputs an estimated 

likelihood of a sepsis developing in the next 6 hours at 

each hourly time step. 

3.1. Data preprocessing  

The first preprocessing step involved applying a 

histogram correcting transform to the data. We first 

evaluated the distribution of the 40 clinical data values. 

We investigated the histogram of every clinical data and a 

log transform was applied to the clinical data values with 

an exponential or long-tailed distribution. As a result, the 

data more closely approximated a Gaussian distribution. 

Following this, normalisation and missing values 

replacement was implemented. The data was normalised 

so that each variable have a mean of zero based on the 

available training data. After normalising, missing values 

were replaced by zero-values (i.e. mean values) until the 

first occurrence of a valid value. After the first valid value, 

variables were replaced with the most recent valid value. 

 

3.2.  Feature augmentation 

After preprocessing, 40 preprocessed variables of the 

input series were used. They were combined with a 34-

length mask vector for missing value flags. The mask was 

set to a value of one, if the original feature was present 

and zero, if the original feature was missing and thus 

imputed at that time step. The mask vector only covered 

the first 34 variables, as the 6 demographic variables were 

present at all time steps. This provided a core feature set 

containing 74 features. 

The core feature set was supplemented with additional 

features including an 8-length delta (changes of the 

variables in time steps) and an 8-length variance vector. 

The 8-length delta was calculated by taking the difference 

of each vital sign variable from its previous time-step 

value, and the 8-length variance vectors were calculated 

by taking the variance of each vital sign over the past six 

hours. For each hour of data therefore, we had a vector of 

L=74, 82 or 90 features. Before applying the feature set to 

the classifier, the features of the present hour were 

appended with those of the past 3 to 9 (H) hours, and 

finally with zeros if the present hour was less than H. 

Thus, a vector of L*H features was created and applied to 

the classifier.  

3.3. Performance measures 

Performance was measured using a utility score defined 

by the Challenge organisers for each prediction [14]. The 

utility function rewards or penalises classifiers for their 

predictions within 12 hours before and 3 hours after sepsis 

onset time and was normalised as described in [14]. 

3.4. Loss function 

The model was trained using a weighted cross-entropy 

function, with positive examples weighted 40:1 in order to 

reflect the weighting of the utility function, whereby false 

negatives were counted as -2 and false positives as -0.05.  

The loss function (L) for a patient was defined as follows. 

 

𝐿 = −
1

𝑇
∑ 40 ∗ 𝑦𝑖 ∗ log(𝑦̂𝑖) + (1 − 𝑦𝑖) ∗ log⁡(1 − 𝑦̂𝑖)

𝑇

𝑖=0
 

 

where⁡𝑇 is the number of time steps recorded for a 

patient, 𝑦𝑖 is the sepsis label output at time step 𝑖 and 𝑦̂𝑖 ⁡is 

the classifer output at time step 𝑖. 
 

 

 -- 40 variables 

 -- 34 missing value flags 

 -- 8 ∆vital signs 

 -- 8 variance variables 

 

-- Gradient Tree Boosting 

-- Weighted cross-entropy function 

 

Feature set 

 -- 8 vital signs 

 -- 26 lab. values 

 -- 6 demographics 

 

-- Log transform 

-- Replace missing values 

Preprocessing Classification Clinical input 

Figure 1. The block diagram of the proposed automated system for prediction of sepsis using clinical data. 
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3.5. Classifier 

The classifier is a gradient boosting model 

implemented using the library Xgboost  [15], [16], 

creating up to 30 decision trees. Models were tested and 

compared by means of a stratified 3-fold split, trained for 

a fixed 40 epochs with a learning rate of 0.2. Training for 

more than 40 epochs led to over-fitting and an overall 

decrease in validation set performance. 

The final submitted model was trained by applying 10-

fold cross validation to the data, using a learning rate of 

0.1, and monitoring the AUPRC of the validation set of 

each fold for early stopping.  

3.6. Performance estimation 

Performance was estimated on 40,336 patients of the 

training set using 3-fold cross validation. The training set 

contained data from 2/3rd’s of the patients with around 1 

million time slices, each representing a time-step of data, 

and the resulting model was evaluated on the remaining 

1/3rd of the patients.  

4. Results 

Our team name in the Challenge was “Sepsyd”. We 

first evaluated the performance results of applying 

different preprocessing to the input data. Table 1 shows a 

model with H=5 trained with different combinations of 

input preprocessing. The results show that applying both 

log transform and normalisation outperformed other 

methods and was used for all following models.  

Table 2 explores different tree depths. Using 3-fold 

cross validation, the best results were obtained with a 

maximum depth of 4. Table 3 shows the average cross-

validated hold-out set performance of different models 

examined. In each case, inclusion of variance features 

improved the performance of the classifier, while 1-step 

deltas did not have much of an impact, and in some cases 

resulted in worse performance. We found that hold-out 

performance varied significantly based on how the data 

was shuffled and split into three folds, so three different 

Table 1. The effect of input preprocessing on utility scores 

with H=5 hours combined 

Preprocessing  Utility Score  

No preprocessing  0.3931 

Feature standardising  0.3926 

Log transforming, feature standardising   0.3933 

 

Table 3. The utility scores of different feature combinations  

H Base+Mask Base+Mask+Delta Base+Mask+Var  All 

3 

4 

5 

0.3927 

0.3936 

0.3933 

0.3931 

0.3934 

0.3933 

0.3946 

0.3950 

0.3947 

 0.3944 

0.3941 

0.3946 

6 0.3932 0.3935 0.3956  0.3959 

7 0.3913 0.3909 0.3947  0.3948 

8 0.3935 0.3934 0.3943  0.3940 

9 0.3911 0.3914 0.3948  0.3930 

 H: hours of combined features, Base: 40 normalised and transformed clinical features, Mask: 34 missing value flags, 

Delta: 8 changes in vital sign features, Var: 8 variance of vital sign features, All: Base+Mask+Delta+Var features 

 

Table 4. The performance of the final system on the training and the full test sets 

                      10-fold cross-validation on train set  

Official test set results                             Train Test 

 Full Set A Set B Full Set A Set B Full Set A Set B Set C 

Utility score 0.455 0.472 0.438 0.400 0.416 0.376 0.345 0.409 0.396 -0.042 

Accuracy 0.861 0.822 0.901 0.858 0.819 0.899 - 0.819 0.901 0.785 

F measure 0.147 0.144 0.152 0.133 0.132 0.136 - 0.131 0.142 0.050 

AUROC 0.863 0.846 0.880 0.834 0.815 0.851 - 0.811 0.853 0.805 

AUPRC 0.142 0.136 0.155 0.111 0.111 0.116 - 0.105 0.119 0.065 
-  Not reported in the official test set results. AUROC: Area under the receiver operator curve. AUPRC: Area under the precision 

recall curve. 

Table 2. A comparison of utility scores for 

different tree depths (D) using 40 training epochs 

D  3 4 5 

Utility score  0.3912 0.3933 0.3881 

 

Page 3



configurations were examined (created by shuffling using 

different random seeds) and the average performance of 

each model over these three configurations is calculated 

and reported. Table 4 shows the utility scores and other 

performance measures of our best submitted system. 

5. Discussion and Conclusion 

Table 3 shows that the highest performance for a 

classifier was obtained with H=6, ie the previous 6 hours 

included with the present hour, and the inclusion of the 

mask and variance vectors, but not the delta vectors. It 

obtained an average utility of 0.3981 on the holdout fold, 

after 3-fold validation. We were not able to submit this 

model for testing in the official phase of the competition. 

A model with H=5 and base+mask vectors (obtaining a 

3-fold cross-validated score of 0.3933 and 10-fold cross-

validated score of 0.4004 during training), was trained 

using all available training data and submitted for final 

testing on the unseen test data. It achieved the second 

highest official score of the competition with a utility 

score of 0.345 on the full test set.  

The same core model was used with additional features 

during the hackathon with team name “Sepsyd” and 

achieved the third highest official score of the hackathon 

with a utility score of 0.329. The additional features 

included sequential organ failure assessment (SOFA) [2], 

national early warning score (NEWS), acceleration in time 

variables, time differentials over multi-hour timescales. As 

the utility score was lower than our official score of 0.345, 

it suggests the new features don’t enhance discrimination. 

The score of our best model was 0.46 on training data, 

suggesting some overfitting in the model. Further 

improvements might be made by varying the hyper-

parameters of the model, particularly parameters that 

effect generalisation such as regularisation. Another area 

to explore is the implementation of a custom loss function 

that approximates the utility score. Rubin et al. achieved  

2nd place at hackathon and used a loss function that 

approximated the utility function by using custom time-

dependent weights to the different error types [17]. 

Finally, inclusion of additional features (for example 

differentials calculated over a number of time slices) 

might also lead to gains in the performance by further 

exploiting any additional temporal information in the data.  
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