Publications from Classification of 12-lead ECGs: The PhysioNet/Computing in Cardiology Challenge 2020


The following paper describes the PhysioNet/Computing in Cardiology Challenge. Please cite this publication when referencing the Challenge.

Classification of 12-lead ECGs: the PhysioNet/Computing in Cardiology Challenge 2020.
Perez Alday EA, Gu A, Shah AJ, Robichaux C, Wong AI, Liu C, Liu F, Rad AB, Elola A, Seyedi S, Li Q, Sharma A, Clifford GD, Reyna MA. Computing in Cardiology 2020.

The following papers were presented at the Computing in Cardiology Conference.

Classification of 12-lead ECGs: the PhysioNet/Computing in Cardiology Challenge 2020
Matthew Reyna1, Erick Andres Perez Alday1, Annie Gu1, Chengyu Liu2, Salman Seyedi1, Ali Bahrami Rad1, Andoni Elola3, Qiao Li1, Ashish Sharma1, Gari Clifford4
1Emory University, 2Southeast University, 3University of the Basque Country, 4Emory University and Georgia Institute of Technology
Multi-Class Classification of Pathologies Found on Short ECG Signals
Georgi Nalbantov, Svetoslav Ivanov, Jeffrey van Prehn
Data Science Consulting Ltd.
Automated Comprehensive Interpretation of 12-lead Electrocardiograms Using Pre-trained Exponentially Dilated Causal Convolutional Neural Networks
Max Bos1, Rutger van de Leur2, Jeroen Vranken1, Deepak Gupta1, Pim van der Harst2, Pieter Doevendans2, René van Es2
1Informatics Institute, University of Amsterdam, 2UMC Utrecht
Multilabel 12-Lead Electrocardiogram Classification Using Gradient Boosting Tree Ensemble
Alexander William Wong1, Weijie Sun2, Sunil Vasu Kalmady2, Padma Kaul1, Abram Hindle1
1University of Alberta, 2Canadian VIGOUR Centre
Combining Scatter Transform and Deep Neural Networks for Multilabel ECG Signal Classification
Maximilian Oppelt1, Maximilian Riehl1, Felix Kemeth2, Jan Steffan1
1Department of Image Processing and Medical Engineering, Fraunhofer Institute for Integrated Circuits IIS, 2Whiting School of Engineering, The Johns Hopkins University
Classification of 12-lead ECGs using digital biomarkers and representation learning
David Assaraf1, Jeremy Levy1, Janmajay Singh2, Armand Chocron1, Joachim A. Behar3
1Faculty of Biomedical Engineering, 2Independent researcher, 3Technion-IIT
Automatic 12-lead ECG Classification Using a Convolutional Network Ensemble
Antonio H. Ribeiro1, Daniel Gedon2, Daniel Martins Teixeira1, Manoel Horta Ribeiro3, Antonio Luiz Ribeiro1, Thomas B. Schön2, Wagner Meira Jr4
1Universidade Federal de Minas Gerais, 2Uppsala University, 3École Polytechnique Fédérale de Lausanne, 4Universidade Federal de Minas Gerasi
ECG Abnormalities Recognition Using Convolutional Network With Global Skip Connections and Custom Loss Function
Tomas Vicar1, Jakub Hejc1, Petra Novotna1, Marina Ronzhina1, Oto Janousek2
1Department of Biomedical Engineering, Brno University of Technology, 2Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
Classification of 12-lead ECGs Using Intra-Heartbeat Discrete-time Fourier Transform and Inter-Heartbeat Attention
Ibrahim Hammoud, IV Ramakrishnan, Petar Djuric
Stony Brook University
On the Application of Convolutional Neural Networks for 12-lead ECG Multi-label Classification using Datasets from Multiple Centers
Davide Borra, Alice Andalò, Stefano Severi, Cristiana Corsi
University of Bologna
Classification of 12-lead ECGs Using Gradient Boosting on Features Acquired With Domain-Specific and Domain-Agnostic Methods
Durmus Umutcan Uguz, Felix Berief, Steffen Leonhardt, Christoph Hoog Antink
RWTH Aachen University
Classification of 12-Lead Electrocardiograms Using Residual Neural Networks and Transfer Learning
Sardar Ansari1, Christopher Gillies1, Brandon Cummings1, Jonathan Motyka1, Guan Wang1, Kevin Ward1, Hamid Ghanbari2
1Emergency Medicine, University of Michigan, 2Internal Medicine-Cardiology, University of Michigan
Multi-label Classification of Electrocardiogram With Modified Residual Networks
Shan Yang, Heng Xiang, Qingda Kong, Chunli Wang
Chengdu Spaceon Electronics CO., LTD.
Utilization of Residual CNN-GRU with Attention Mechanism for Classification of 12-lead ECG
Petr Nejedly1, Adam Ivora1, Ivo Viscor1, Josef Halamek2, Pavel Jurak3, Filip Plesinger3
1Institute of Scientific Instruments of the Czech Academy of Science, 2Institute of Scientific Instruments, CAS, CZ, 3Institute of Scientific Instruments of the CAS
Arrhythmia Detection and Classification of 12-lead ECGs Using a Deep Neural Network
wenxiao jia, Xiao Xu, Xian Xu, Yuyao Sun, Xiaoshuang Liu
pingan health technology
Automatic 12-lead ECG Classification Using Deep Neural Networks
Wenjie Cai, Shuaicong Hu, Jingying Yang, Jianjian Cao
University of Shanghai for Science and Technology
Automatic Classification of Arrhythmias by Residual Network and BiGRU With Attention Mechanism
Runnan He1, Kuanquan Wang1, Na Zhao1, Qiang Sun2, Yacong Li1, Qince Li1, Henggui Zhang3
1Harbin Institute of Technology, 2Beijing Electric Power Hospital, 3University of Manchester
Selected Features for Classification of 12-lead ECGs
Marek Żyliński1 and Gerard Cybulski2
1Warsaw University of Technology, 2Department of Mechatronics, WUT
Electrocardiogram Classification by Modified EfficientNet with Data Augmentation
Naoki Nonaka and Jun Seita
RIKEN
A Deep Neural Network and Reconstructed Phase Space Approach to Classifying 12-lead ECGs
David Kaftan1 and Richard Povinelli2
1Marquette Energy Analytics, 2Marquette University
SE-ECGNet: Multi-scale SE-Net for Multi-lead ECG Data
Jiabo Chen1, Tianlong Chen2, Bin Xiao1, Xiuli Bi1, Yongchao Wang1, Weisheng Li1, Han Duan1, Junhui Zhang3, Xu Ma4
1Chongqing University of Posts and Telecommunications, 2Southwest Jiaotong University, 3The First Affiliated Hospital of Chongqing Medical University, 4Human Genetics Resource Center National Research Institute for Family Planning
Deep Multi-Label Multi-Instance Classification on 12-Lead ECG
Yingjing Feng and Edward Vigmond
LIRYC - University of Bordeaux
A Wide and Deep Transformer Neural Network for 12-Lead ECG Classification
Annamalai Natarajan, Yale Chang, Sara Mariani, Asif Rahman, Gregory Boverman, Shruti Vij, Jonathan Rubin
Philips Research North America
Adaptive lead weighted ResNet trained with different duration signals for classifying 12-lead ECGs
Zhibin Zhao1, Hui Fang2, Samuel Relton3, Ruqiang Yan1, Yuhong Liu4, Zhijing Li1, Jing Qin5, David Wong6
1Xi'an Jiaotong University, 2Loughborough University, 3University of Leeds, 4Chengdu Medical College, 5Dalian University, 6University of Manchester
Rule-Based methods and Deep Learning Networks for Automatic Classification of ECG
giovanni bortolan1, Ivaylo Christov2, Iana Simova3
1IN-CNR, 2Institute of Biophysics and Biomedical Engineering - Bulg. Accad. of Sci, 3Acibadem City Clinic Cardiovascular Center- University Hospital, Sofia
12-lead ECG Arrythmia Classification Using Convolutional Neural Network for Mutually Non-Exclusive Classes
Mateusz Soliński1, Michał Łepek1, Antonina Pater1, Katarzyna Muter2, Przemysław Wiszniewski3, Dorota Kokosińska1, Judyta Salamon4, Zuzanna Puzio1
1Faculty of Physics, Warsaw University of Technology, 2Faculty of Electronics and Information Technology, Warsaw University of Technology, 3Faculty of Electrical Engineering, Warsaw University of Technology, 4Warsaw University of Technology
Identification of Cardiac Arrhythmias from 12-lead ECG using Beat-wise Analysis and a Combination of CNN and LSTM
Mohanad Alkhodari, Leontios J. Hadjileontiadis, Ahsan H. Khandoker
Khalifa University
Multi-label Arrhythmia Classification From 12-Lead Electrocardiograms
Po-Ya Hsu1, Po-Han Hsu1, Tsung-Han Lee1, Hsin-Li Liu2
1University of California San Diego, 2Central Taiwan University of Science and Techonology
Diagnostic of Multiple Cardiac Disorders from 12-lead ECGs Using Graph Convolutional Network Based Multi-label Classification
Zheheng Jiang, Tiago Paggi de Almeida, Fernando Schlindwein, G. André Ng, Huiyu Zhou, Xin Li
University of Leicester
Automated Classification of Electrocardiograms Using Wavelet Analysis and Deep Learning
Andrew Demonbreun and Grace Mirsky
Benedictine University
Multi-label Classification of Abnormalities in 12-Lead ECG Using Deep Learning
Ao Ran1, Dongsheng Ruan2, Yuan Zheng3, Huafeng Liu4
1Zhejiang University, 2College of computer science and technology,Zhejiang University, 3School of Aeronautics and Astronautics,Zhejiang University, 4College of Optical Engineering, Zhejiang University, China
ECG Arrhythmia Classification using Non-Linear Features and Convolutional Neural Networks
Sebastian Cajas, Pedro Astaiza, David Santiago Garcia Chicangana, Camilo Segura, Diego Lopez
Universidad del Cauca
Multi-Stream Deep Neural Network for 12-Lead ECG Classification
Martin Baumgartner, Dieter Hayn, Andreas Ziegl, Alphons Eggerth, Günter Schreier
AIT Austrian Institute of Technology
Impact of Neural Architecture Design on Cardiac Abnormality Classification Using 12-lead ECG Signals
Najmeh Fayyazifar1, Selam Ahderom1, David Suter1, Andrew Maiorana2, Girish dwivedi3
1Edith Cowan University, 2Curtin University, 3University of Western Australia
A Real-time ECG Classification Scheme Using Anti-aliased Blocks with Low Sampling Rate
Yunkai Yu1, Zhihong Yang2, Zhicheng Yang3, Peiyao Li4, Yuyang You1
1Beijing Institute of Technology, 2Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, 3PAII Inc., 4Tsinghua University
Cardiac Pathologies Detection and Classification in 12-lead ECG
Radovan Smisek, Andrea Nemcova, Lucie Marsanova, Lukas Smital, Martin Vítek, Jiri Kozumplik
Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering
Interpretable XGBoost Based Classification of 12-lead ECGs Applying Information Theory Measures From Neuroscience
Hardik Rajpal1, Madalina Sas1, Rebecca Joakim2, Chris Lockwood3, Nicholas S. Peters1, Max Falkenberg1
1Imperial College London, 2Wexham Park Hospital, 3Independent Researcher
A Novel Convolutional Neural Network for Arrhythmia Detection From 12-lead Electrocardiograms
Zhengling He, Pengfei Zhang, Lirui Xu, Zhongrui Bai, Hao Zhang, Weisong Li, Pan Xia, Xianxiang Chen
Aerospace Information Research Institute, Chinese Academy of Sciences
ECG Classification With a Convolutional Recurrent Neural Network
Halla Sigurthorsdottir, Jérôme Van Zaen, Ricard Delgado-Gonzalo, Mathieu Lemay
Swiss Center for Electronics and Microtechnology (CSEM)
Detecting Cardiac Abnormalities from 12-lead ECG Signals Using Feature Extraction, Dimensionality Reduction, and Machine Learning Classification
Garrett Perkins1, J. Chase McGlinn1, Muhammad Rizwan2, Bradley Whitaker1
1Montana State University, 2University of Management & Technology
A Bio-toolkit for Multi-Cardiac Abnormality Diagnosis Using ECG Signal and Deep Learning
Akash Kirodiwal1, Apoorva Srivastava1, Ashutosh Dash1, Ayantika Saha2, Gopi Vamsi Penaganti3, Sawon Pratiher4, sazedul alam5, Amit Patra6, Nirmalya Ghosh7, Nilanjan Banerjee8
1Electrical Engineering Department,IIT Kharagpur, 2Department of Electrical Engineering IIT, Kharagpur India, 3Department of Electrical Engineering IIT Kharagpur, 4Electrical Engineering Department, IIT Kharagpur, 5PhD student, CSEE, UMBC., 6Professor, IIT kharagpur, 7Assistant Professor, IIT Kharagpur, 8Associate professor, CSEE, UMBC
Cardiac Abnormality Detection in 12-lead ECGs with Deep Convolutional Neural Networks Using Data Augmentation
Lucas Weber1, Maksym Gaiduk1, Wilhelm Daniel Scherz1, Ralf Seepold2
1HTWG Konstanz, 2HTWG Konstanz, I.M. Sechenov First Moscow State Medical University
Explainable Deep Neural Network for Identifying Cardiac Abnormalities Using Class Activation Map
Yu-Cheng Lin, Yun-Chieh Lee, Wen-Chiao Tsai, Win-Ken Beh, An-Yeu Wu
Graduate Institute of Electronic Engineering, National Taiwan University
Classification of 12 Lead ECG Signal Using 1D-CNN With Class Dependent Threshold
Rohit Pardasani1 and Navchetan Awasthi2
1GE Healthcare, 2Massachusetts General Hospital, Harvard University
Classification of Cardiac Abnormalities From ECG Signals Using SE-ResNet
Zhaowei Zhu1, Han Wang2, Tingting Zhao1, Yangming Guo1, Zhuoyang Xu1, Zhuo Liu1, Siqi Liu3, Xiang Lan2, Xingzhi Sun1, Mengling Feng2
1Ping An Technology, 2National University of Singapore, National University Health System, 3NUS Graduate School for Integrative Sciences & Engineering
MADNN: A Multi-scale Attention Deep Neural Network for Arrythmia Classification
Ran Duan, Xiaodong He, Ouyang Zhuoran
Edan Diagnostics Ltd.
Multi-Label Classification of 12-lead ECGs by Using Residual CNN and Class-Wise Attention
Yang Liu1, Kuanquan Wang1, Yongfeng Yuan1, Qince Li1, Yacong Li1, Yongpeng Xu2, Henggui Zhang3
1Harbin Institute of Technology, 2Yongjia County Public Security Bureau, 3University of Manchester
A Topology Informed Random Forest Classifier for ECG Classification
Paul Samuel Ignacio, Jay-Anne Bulauan, John Rick Manzanares
University of the Philippines Baguio
A Deep Learning Solution for Automatized Interpretation of 12-Lead ECGs
Alvaro Huerta Herraiz1, Arturo Martinez-Rodrigo2, José J Rieta3, Raul Alcaraz2
1Research Group in Electronic, Biomedical and Telecommunication Engineering, University of Castilla-La Mancha, Spain., 2University of Castilla-La Mancha, 3BioMIT.org, Universitat Politecnica Valencia
Bag of Tricks for Electrocardiogram Classification with Deep Neural Networks
Seonwoo Min1, Hyun-Soo Choi2, Hyeongrok Han3, Minji Seo3, Jin-Kook Kim4, Junsang Park4, Sunghoon Jung4, Il-Young Oh5, Byunghan Lee6, Sungroh Yoon7
1Seoul National University, 2T3K, SK Telecom, 3Department of Electrical and Computer engineering, Seoul National University, 4HUINNO Co., Ltd., 5Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, 6Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology, 7Department of Electrical and Computer engineering, Department of Biological Sciences, Interdisciplinary Program in Bioinformatics, Interdisciplinary Program in Artificial Intelligence, ASRI, INMC, and Institute of Engineering Research, Seoul National University
Detection of Cardiac Arrhythmias From Varied Length Multichannel Electrocardiogram Recordings Using Deep Convolutional Neural Networks
Marwen Sallem1, Adnen Saadaoui2, Amina Ghrissi3, Vicente Zarzoso4
1PacketAI, 2Vneuron, 3Université Côte d’Azur, CNRS, I3S Laboratory, 4Université Côte d'Azur
Prediction of Apnoea and Non-apnoea Arousals from the Polysomnogram using a Neural Network Classifier
Philip de Chazal, John Du, Nadi Sadr
University of Sydney
Rhythm classification of 12-lead ECGs using deep neural network and class-activation maps for improved explainability
Sebastian Goodfellow1, Dmitrii Shubin2, Danny Eytan2, Andrew Goodwin2, Anusha Jega2, Azadeh Assadi2, Mjaye Mazwi2, Robert Greer2, Sujay Nagaraj2, Peter Laussen2, William Dixon2, Carson McLean3
1The Hospital For Sick Children, 2Hospital for Sick Children, 3University of Toronto
ECG Segmentation using a Neural Network as the Basis for Detection of Cardiac Pathologies
Philipp Sodmann and Marcus Vollmer
Universität Greifswald
Classification of 12-lead ECG with an Ensemble Machine Learning Approach
Matteo Bodini1, Massimo W Rivolta2, Roberto Sassi3
1Università degli Studi di Milano, 2Dipartimento di Informatica, Università degli Studi di Milano, 3Università degli Studi di Milano, Dipartimento di Informatica
Convolutional Recurrent Neural Network and LightGBM Ensemble Model for 12-lead ECG Classification
Charilaos Zisou, Andreas Sochopoulos, Konstantinos Kitsios
Aristotle University of Thessaloniki
Automatic Concurrent Arrhythmia Classification Using Deep Residual Neural Networks
Deepankar Nankani, Pallabi Saikia, Rashmi Dutta Baruah
Computer Science and Engineering Department, Indian Institute of Technology Guwahati
ECG Morphological Decomposition for Automatic Rhythm Identification
Guadalupe García Isla, Rita Laureanti, Valentina Corino, Luca Mainardi
Politecnico di Milano
Classification of 12-lead ECG Signals with Adversarial Multi-Source Domain Generalization
Hosein Hasani, Adeleh Bitarafan, Mahdieh Soleymani
Sharif University of Technology
Cardiac Arrhythmias Identification by Parallel CNNs and ECG Time-Frequency Representation
Jonathan Roberto Torres Castillo, K De Los Rios, Miguel Ángel Padilla Castañeda
Universidad Nacional Autónoma de México
Arrhythmia classification of 12-lead Electrocardiograms by Hybrid Scattering-LSTM networks
Philip Warrick1, Masun Nabhan Homsi2, Vincent Lostanlen3, Michael Eikenberg4, Joakim Andén5
1Perigen, 2Helmholtz Centre for Environmental Research - UFZ, 3New York University, 4Flatiron Institute, 5KTH Royal Institute of Technology