Publications from Heart Murmur Detection from Phonocardiogram Recordings: The George B. Moody PhysioNet Challenge 2022


The following papers were presented at the Computing in Cardiology Conference.

Heart Murmur Detection from Phonocardiogram Recordings: The George B. Moody PhysioNet Challenge 2022
Matthew Reyna1, Yashar Kiarashinejad1, Andoni Elola2, Jorge Oliveira3, Francesco Renna4, Annie Gu1, Nadi Sadr1, Erick Andres Perez Alday1, Ashish Sharma1, Sandra Mattos5, Miguel Coimbra4, Reza Sameni1, Ali Bahrami Rad1, Gari Clifford6
1Emory University, 2University of the Basque Country, 3Instituto de Telecomunicações, 4INESC TEC, Faculdade de Ciências da Universidade do Porto, 5Real Hospital Português, 6Emory University and Georgia Institute of Technology 1Emory University, 2University of the Basque Country UPV/EHU, 3University of Michigan, 4Emory University and Georgia Institute of Technology
Detection of Heart Sound Murmurs and Clinical Outcome with Bidirectional Long Short-Term Memory Networks
Sofia Monteiro, Ana Fred, Hugo Silva
Instituto de Telecomunicações, Department of Bioengineering at Instituto Superior Técnico
Learning Time-Frequency Representations of Phonocardiogram for Murmur Detection
Jae-Man Shin1, Seong-Yong Park1, Hyun-Seok Kim2, Woo-Young Seo2, Sung-Hoon Kim3
1Department of Anesthesiology and Pain Medicine, Asan Medical Center, 2Biomedical Engineering Research Center, Asan Institute for Life Science, Asan Medical Center, 3Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine
Outcome Prediction and Murmur Detection in Sets of Phonocardiograms by a Deep Learning-Based Ensemble Approach
Sven Festag1, Gideon Stein2, Tim Büchner3, Maha Shadaydeh3, Joachim Denzler2, Cord Spreckelsen1
1Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Germany, 2Computer Vision Group, Institute for Computer Science, Friedrich Schiller University Jena, 3Computer Vision Group, Institute for Computer Science, Friedrich Schiller University Jena, Germany
Detection of Heart Murmurs in Phonocardiograms with Parallel Hidden Semi-Markov Models
Andrew McDonald, Mark Gales, Anurag Agarwal
University of Cambridge
Multitask and Transfer Learning for Cardiac Abnormality Detection in Heart Sounds
João Costa1, Rui Rodrigues2, Paula Couto2
1University Institute of Lisbon - ISCTE and CAMGSD - IST/ULisboa, 2DM-FCT NOVA
Using Mel-Spectrograms and 2D-CNNs to Detect Murmurs in Variable Length Phonocardiograms
Marius Knorr and Jan Bremer
University Medical Center Hamburg Eppendorf, Department of Cardiology, University Heart & Vascular Center Hamburg, Hamburg, Germany
Towards Uncertainty-Aware Murmur Detection in Heart Sounds via Tandem Learning
Erika Bondareva, Jing Han, Tong Xia, Cecilia Mascolo
University of Cambridge
Two-Stage Multitask-Learner for PCG Murmur Location Detection
Maurice Rohr1, Benedikt Müller1, Sebastian Dill1, Gökhan Güney1, Christoph Hoog Antink2
1Technische Universität Darmstadt, 2TU Darmstadt
Transfer Learning in Heart Sound Classification using Mel spectrogram
Xin Li, Fernando Schlindwein, G. Andre Ng
University of Leicester
Classification of phonocardiograms using residual convolutional neural network and MLP
Guohui Peng, Haitao Zou, Jin Wang
Jiangsu University of Science and Technology
Ensemble Transformer-Based Neural Networks Detect Heart Murmur In Phonocardiogram Recordings
Mohanad Alkhodari1, Syafiq Azman2, Leontios Hadjileontiadis1, Ahsan Khandoker1
1Khalifa University, 2AIQ, ADNOC H.Q.
Classification of heart murmurs using an ensemble of residual CNNs
Petr Nejedly1, Jan Pavlus1, Radovan Smisek2, Zuzana Koscova3, Eniko Vargova3, Ivo Viscor3, Pavel Jurak3, Filip Plesinger3
1Institute of Scientific Instruments of the Czech Academy of Science, 2Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, 3Institute of Scientific Instruments of the CAS
Convolutional neural network aproach for heart murmur detection in auscultation signals using wavelet transform based features
Robertas Petrolis1, Renata Paukstaitiene1, Gabriele Rudokaite2, Andrius Macas2, Arturas Grigaliunas1, Algimantas Krisciukaitis1
1Department of Physics, Mathematics and Biophysics, Lithuanian University of Health Sciences., 2Department of Anaesthesiology, Medical Academy, Lithuanian University of Health Sciences
Detection of Murmurs from Heart Sound Recordings with Deep Residual Networks
Lei Hu, Wenjie Cai, Xinyue Li, Jia Li
University of Shanghai for Science and Technology
Classification of Murmurs in PCG Using Combined Frequency Domain and Physician Inspired Features
Julia Ding1, Jing-Jing Li2, Max Xu3
1Emory University, 2University of California, Berkeley, 3Georgia Institute of Technology
Murmur Identification Using Supervised Constrastive Learning
Ľubomír Antoni1, Erik Bruoth1, Alexander Szabari1, Gabriela Vozáriková1, Peter Bugata2, Peter Bugata Jr2, Dávid Gajdoš2, Dávid Hudák2, Vladimíra Kmečová2, Monika Staňková2
1Pavol Jozef Šafárik University, 2VSL Software, a.s.
Deep Learning Based Heart Murmur Detection using Frequency-time Domain Features of Heartbeat Sounds
Jungguk Lee1, Taein Kang1, Narin Kim1, Soyul Han1, Hyejin Won1, Wuming Gong2, Il-Youp Kwak1
1Chung-Ang University, 2University of Minnesota, Lillehei heart institute
Murmur Classification with U-net State Prediction
Sanghoon Choi, Hyo-Chang Seo, Kyungmin Choi, Giwon Yoon, Segyeong Joo
Asan medical center
Classification of Phonocardiogram Recordings using Vision Transformer Architecture
Joonyeob Kim, Gibeom Park, Bongwon Suh
Seoul National University
Phonocardiogram Classification Using 1-Dimensional Inception Time Convolutional Neural Networks
Bjørn-Jostein Singstad1, Lars Bongo2, Markus Johnsen3, Johan Ravn3, Antony Gitau4, Henrik Schirmer5
1Simula Research Laboratory, 2The Arctic University of Norway, 3Medsensio, 4Kenyatta University, 5Department of Cardiology, Akershus University Hospital
Heart Murmur Detection from Phonocardiogram Based on Residual Neural Network with Classes Distinguished Focal Loss
Pan Xia1, Yicheng Yao1, Changyu Liu1, Hao Zhang1, Lirui Xu1, Yuqi Wang2, Lidong Du1, Yusi Zhu3, Zhen Fang1
1School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, 2Aerospace Information Research Institute, Chinese Academy of Sciences, 3School of Physics and Electronic Information, Yunnan Normal University
Searching for Effective Neural Network Architectures for Heart Murmur Detection from Phonocardiogram
Hao WEN1 and Jingsu Kang2
1Beihang University, 2Tianjin Medical University
Heart Murmur Detection and Clinical Outcome Prediction using Multilayer Perceptron Classifier
Kiarash Jalali, Mohammad Amin Saket, Saman Noorzadeh
Shahid Beheshti University
An LSTM-based Listener for Early Detection of Heart Disease
Philip Gemke1, Nicolai Spicher2, Tim Kacprowski1
1Division Data Science in Biomedicine, PLRI of TU BS and MHH, BRICS, TU BS, 2Department of Medical Informatics, University Medical Center Göttingen
A Lightweight Robust Approach for Automatic Heart Murmurs and Clinical Outcomes Classification from Phonocardiogram Recordings
Hui Lu1, Julia Yip2, Tobias Steigleder2, Stefan Grießhammer3, Maria Heckel4, Naga Venkata Sai Jitin Jami5, Bjoern Eskofier5, Christoph Ostgathe2, Alexander Koelpin6
1Brandenburg University of Technology, 2Palliative Medicine, Universitätsklinikum Erlangen, 3Palliative Medicine, Universitätsklinikum Erlangen,, 4Palliative Medicine, Universit�tsklinikum Erlangen, 5Friedrich-Alexander-Universität Erlangen-Nürnberg, 6Institute of High-Frequency Technology, Hamburg University of Technology
Heart Murmur Detection of PCG Using ResNet with Selective Kernel Convolution
Yonghao Gao, Lihong Qiao, Zhixiang Li
Chongqing University of Posts and Telecommunications
Transformer embedded with learnable filters for heart murmur detection
Pengfei Fan, Yucheng Shu, Yiming Han
Chongqing University of Posts and Telecommunications
Beat-wise Uncertainty Learning for Murmur Detection in Heart Sounds
Xingyao Wang1, Foli Fan1, Hongxiang Gao1, Shuo Zhang1, Chenxi Yang1, Jianqing Li1, Chengyu Liu2
1State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China, 2Southeast University
ACQuA: Anomaly Classification with Quasi-Attractors
William Rudman, Jack Merullo, Laura Mercurio, Carsten Eickhoff
Brown University
Heart Murmur Detection Using Ensemble of Deep Learning Classifiers for Phonocardiograms Recorded from Multiple Auscultation Locations
Saman Parvaneh, Zaniar Ardalan, Joomyung Song, Kathan Vyas, Cristhian Potes
Edwards Lifesciences
Maiby's Algorithm: A Two-stage Deep Learning Approach for Murmur Detection in Mel Spectrograms for Automatic Auscultation of Congenital Heart Disease
Matheus Araujo1, Dewen Zeng2, Joao Palotti3, Xinrong Hu2, Yiyu Shi2, Lee Pyles4, Quan Ni5
1Cleveland Clinic Foundation, 2University of Notre Dame, 3Qatar Computing Research Institute, 4West Virginia University, 5One Heart Health
Heart Murmur Detection Using Wavelet Time Scattering and Support Vector Machines
Adrian Cornely and Grace Mirsky
Benedictine University
Exploring a Segmentation-Classification Deep Learning-based Heart Murmurs Detector
Daniel Eneriz1, Antonio Rodriguez-Almeida2, Himar Fabelo3, Samuel Ortega4, Francisco Balea-Fernandez5, Nicolás Medrano1, Belén Calvo1, Gustavo Callico2
1Group of Electronic Design Aragon Institute of Engineering Research (I3A) University of Zaragoza (UZ), 2Institute for Applied Microelectronics(IUMA) University of Las Palmas de Gran Canaria (ULPGC), 3Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), IUMA, ULPGC, 4Norwegian Institute of Food Fisheries and Aquaculture Research, Nofima, 5Dept. of Psychology, Sociology and Social Work, IUMA, University of Las Palmas de Gran Canaria (ULPGC)
Heart Murmur Detection in Phonocardiographic Signals Using Breathing Noise Suppression
Kristóf Müller and Dr. Márton Áron Goda
Pázmány Péter Catholic University - Faculty of Information Technology and Bionics
Listen2YourHeart: A Self-Supervised Approach for Detecting Murmur in Heart-Beat Sounds
Aristotelis Ballas1, Vasileios Papapanagiotou2, Anastasios Delopoulos2, Christos Diou3
1Harokopio University of Athens, Department of Informatics and Telematics, 2Aristotle University of Thessaloniki, 3Harokopio University of Athens
Multi-Task Prediction of Murmur and Outcome from Heart Sound Recordings
Yale Chang1, Luoluo Liu1, Corneliu Antonescu2
1Philips, 2Banner Health
A Fusion of Handcrafted Features and Deep Learning Classifiers for Heart Murmur Detection
Zaria Imran1, Ethan Grooby1, Chiranjibi Sitaula1, Vinayaka Malgi2, Sunil Aryal2, Faezeh Marzbanrad1
1Monash University, 2Deakin University
Modified Variable Kernel Length ResNets for Heart Murmur Detection and Clinical Outcome Prediction Using Phonocardiogram Recordings
Vijay Vignesh Venkataramani, Akshit Garg, U. Deva Priyakumar
International Institute of Information Technology, Hyderabad
Murmur Detection and Clinical Outcome Classification Using a VGG-like Network and Combined Time-Frequency Representations of PCG Signals
Zhongrui Bai1, Baiju Yan2, Xianxiang Chen3, Yirong Wu3, Peng Wang3
1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 2Shanghai Jiao Tong University, 3Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS)
Two-stage Detection of Murmurs from Phonocardiograms using Deep and One-class Methods
Sara Summerton1, Danny Wood1, Darcy Murphy1, Oliver Redfern2, Matt Benatan3, Matti Kaisti4, David Wong1
1University of Manchester, 2University of Oxford, 3Independent Researcher, 4University of Turku, Department of Computing
Dual Bayesian ResNet: A Deep Learning Approach to Heart Murmur Detection
Felix Krones1, Benjamin Walker1, Adam Mahdi1, Ivan Kiskin2, Terry Lyons1, Guy Parsons3
1Oxford University, 2University of Surrey, People-Centred Institute of AI, Surrey Sleep Research Centre, 3Intensive Care Registrar, Thames Valley Deanery, NIHR Academic Clinical
Phonocardiographic Murmur Detection by Scattering-Recurrent Networks
Philip Warrick1 and Jonathan Afilalo2
1PeriGen Canada, McGill University, 2McGill University
Hierarchical Multi-Scale Convolutional Network for Murmurs Detection on PCG Signals
Yujia Xu, Xinqi Bao, Hak-Keung Lam, Ernest Kamavuako
King's College London