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Abstract The complexity of mathematical models

describing the cardiovascular system has grown in recent

years to more accurately account for physiological

dynamics. To aid in model validation and design, classical

deterministic sensitivity analysis is performed on the car-

diovascular model first presented by Olufsen, Tran,

Ottesen, Ellwein, Lipsitz and Novak (J Appl Physiol

99(4):1523–1537, 2005). This model uses 11 differential

state equations with 52 parameters to predict arterial blood

flow and blood pressure. The relative sensitivity solutions

of the model state equations with respect to each of the

parameters is calculated and a sensitivity ranking is created

for each parameter. Parameters are separated into two

groups: sensitive and insensitive parameters. Small chan-

ges in sensitive parameters have a large effect on the model

solution while changes in insensitive parameters have a

negligible effect. This analysis was successfully used to

reduce the effective parameter space by more than half and

the computation time by two thirds. Additionally, a simpler

model was designed that retained the necessary features of

the original model but with two-thirds of the state equa-

tions and half of the model parameters.
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Introduction

During the last decades a large number of lumped param-

eter differential equations models have been developed to

study dynamics and control of the cardiovascular system,

see e.g., Kappel and Peer (1993), Olufsen et al. (2005),

Olufsen et al. (2006), Ottesen (1997a, b), Rideout (1991),

and Ursino (1998). Typically, these models predict blood

pressure and flow in and between compartments repre-

senting various parts of the cardiovascular system using

electrical circuits with capacitors and resistors. In the

recent years the complexity of these models have increased

to more accurately account for the underlying physiologi-

cal dynamics. For example, complex nonlinear models

have been developed to describe the pulsatile pumping of

the heart, e.g., Danielsen and Ottesen (2001), Ottesen and

Danielsen (2003), and Olufsen et al. (2005), and the blood

flow and blood pressure regulation, Olufsen et al. (2004),

Olufsen et al. (2005), Heldt et al. (2002), and Ursino

(1998). These complex nonlinear models often include a

large number of parameters. While physiological knowl-

edge can be used to determine nominal values for some of

these parameters, several parameters can only be estimated

based on observations from animal studies, and some

parameters cannot be determined at all. Simulations using

nominal parameter values may provide insight into the

overall model dynamics and the behavior for a given group

of subjects, but since physiological properties are known to

vary significantly between subjects, such simulations can-

not provide patient specific information.

One way to obtain patient specific information is to

solve the inverse problem: identifying model parameters

given measured observations and the mathematical model.

This can be done using non-linear optimization techniques

for example, as described by Kelley (1999). However,
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these techniques have mostly been used for simpler prob-

lems with a small number of paramters or for problems

where most of the internal states can be determined. For

complex nonlinear problems with many states and param-

eters, where only a limited number of states can be

observed, these techniques give rise to non-unique solu-

tions and they often result in numerical problems since the

differential equations may be stiff, contain delays, or be ill-

posed. In this study, we plan to use sensitivity analysis as

described by Eslami (1994) and Frank (1978), to separate a

large set of parameters into two groups: sensitive param-

eters (parameters for which a small change in the parameter

value gives rise to a large change in an observed state) and

insensitive parameters (parameters for which a small

change in their values does not significantly affect the

dynamics of one of the observed states). The goal of our

study is to show that it is possibly to only ‘‘identify’’

sensitive parameters while the ‘‘insensitive parameters’’

can be kept at their nominal values. This information can

also be used to obtain a better understanding of the model

behavior and to provide information for model reduction

and simplification.

In this study, we analyzed a cardiovascular model with

11 compartments developed to predict the effect of postural

change from sitting to standing using measurements of

finger blood pressure and cerebral blood flow velocity. This

model predicts arterial and venous blood pressures as well

as the volume of the heart using a system of 11 coupled

differential equations that are functions of 52 model

parameters. Unique identification of all 52 parameters is

not possible, and even obtaining approximate estimations

for these parameters is time consuming. Furthermore, the

computed outcome states at locations where data are

measured (i.e., finger blood pressure and cerebral blood

flow velocity) may not be sensitive to all 52 parameters.

Sensitivity analysis methodologies can be formulated

either using a stochastic or a deterministic approach. In this

study we only discuss deterministic methodologies. These

can be divided into two groups: studies that examine local

sensitivities, obtained by studying the effect of small per-

turbations of the model parameters, and studies that

examine global sensitivities, obtained by examining the

model dynamics of a large parameter space. Sensitivity

analysis has been used over the last several years to analyze

models in other sciences, but to our knowledge this type of

analysis has not been used extensively for the analysis of

physiological models. Previous studies include work by

Ebert (1985), who performed a local sensitivity analysis

using analytic derivatives to understand what parameters

that had the greatest impact on sea urchin growth, while

Carmichael et al. (1997) compared three local sensitivity

methods, all using automatic differentiation, to analyze the

impact of parameter perturbations on atmospheric ozone.

Rabitz et al. (1983) discuss both local and global methods

in the context of a system of ordinary differential equations

(ODEs) that describe chemical kinetics.

For all of the above studies the goal was to derive

sensitivity information to better understand the model

dynamics, but was not used for further model development.

We will focus on using sensitivities for model assessment

and development. We adopt a similar procedure as Banks

and Bortz (2005) and Bortz and Nelson (2004), but take the

analysis a step further using sensitivity ranking results to

shorten the parameter identification computational time

and simplify the model.

In the following, we provide a description of the

mathematical model and experimental setup. Subsequently,

sensitivity analysis and special considerations important

for analysis of the blood flow model will be described.

Finally, we describe sensitivity results and discuss how

these can be used to design the simplest possible model that

can predict dynamics observed in experimental data.

Methods

The 11 compartment model to be analyzed (see Fig. 1a)

was originally developed to understand dynamics of cere-

bral blood flow velocity and finger blood pressure during

postural change from sitting to standing, Olufsen et al.

(2004, 2005). To understand this process, the model

included three states: (i) sitting, also referred to as ‘‘steady-

state’’, where limited regulation occurs; (ii) transition from

sitting to standing including the initial gravitational

response leading to pooling of blood in the legs; and (iii)

standing, where short-term regulatory mechanisms are

activated to bring blood pressure and blood flow from

decreased values back to steady-state.

Current physiological knowledge suggests that the

majority of these control mechanisms occur in systemic

circulation. Furthermore, data to be analyzed were all

measured in the systemic circulation. Thus the model to be

studied only comprised the systemic circulation. This

simplification of the model design was essential, since it

allowed us to only represent one side of the heart, namely

the left atrium and the left ventricle. To dynamically

describe the blood flow and blood pressure and their con-

trol during postural change, it is important to describe flow

of blood, including how vessel tone, vessel diameters, heart

rate, and cardiac contractility (included in the heart model)

are modulated during postural change. To understand the

system dynamics the model included elements that can

represent these quantities. To understand the controlled

response, it was necessary to include a model that descri-

bed how this response was evoked. Physiologically,

standing up leads to pooling of blood in the legs. Thus the
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model included compartments that comprised arteries and

veins in the upper body and in the legs. To predict

responses observed in data the model included one com-

partment representing the finger, and two compartments

representing the flow to the brain. Finally, to generate the

pulse-wave pumped through the circulation, the model

included compartments representing the left atrium and the

left ventricle. The resulting model arising from these

considerations is shown in Fig. 1a. To illustrate the ideas

proposed in this study, we focus on analyzing the steady-

state (sitting) portion of the model.

Model Equations

Similar to previous studies, Olufsen et al. (2004, 2005), the

model is depicted using an electrical circuit analog in

which pressure p(t) (mmHg) compares to voltage and

volumetric flow rate q(t) (cm3/s) is analogous to current.

Compliance C (cm3/mmHg) plays the role of capacitance

and is a measure of vessel tone (stiffness), and resistance R

(mmHg s/cm3) is the same in both environments. Below

we describe the derivation of the model. A complete list of

all equations can be found in the Appendix, a list of state

variables can be found in Table 1, and the model param-

eters are listed in Table 4. For each of the arterial and

venous compartments (i.e., neither of the heart compart-

ments), pressure pi(t) is determined by differentiating the

volume equation Vi(t) - Vunstr,i = Cipi(t), where Vi(t)

(cm3) is the time-dependent volume, Vunstr,i (cm3) (con-

stant) is the unstressed volume, and Ci is the compliance

(constant). Differentiating this equation gives

Ci
dpi

dt
¼ dVi

dt
¼ qin � qout; where

qin ¼
pi�1 � pi

Rin

; qout ¼
pi � piþ1

Rout

:
ð1Þ

In the above equation, the state variables are pressures pi

and the model parameters to be identified are Ri and Ci.

The subscript i designates the particular compartment, thus

i - 1 and i + 1 refer to upstream and downstream
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Fig. 1 (a) The 11 compartment model electrical circuit analog of the

systemic circulation, including arteries (a) and veins (v) in the brain

(cerebral vasculature, c), the upper body (u), the legs (lower body, l),

the finger (f), the left atrium (la), and the left ventricle (lv). Flow

through the model is defined by q (cm3/s). Pressures and volumes

related to each compartment are marked by p (mmHg) and V (cm3),

respectively. Resistors are denoted by R (mmHg s/cm3) and capac-

itors by C (cm3/mmHg). Resistors Racp, Raup, Ralp, and Rafp represent

the peripheral vascular bed. The mitral and aortic valves are marked

by small lines inside the compartment representing the left ventricle.

Blood pressure paf (mmHg) was measured in the finger and blood

flow velocity vacp = qacp/Aacp (cm/s) was measured in the middle

cerebral artery (marked with circles on the figure), where Aacp (cm2) is

vessel cross-sectional area. (b) The experimental setup, with blood

pressure and blood flow velocity measurement locations marked with

filled circles

Table 1 Description of the state variables (a list of the model

parameters can be found in Table 4), also see Fig. 1 for the locations

of the states

State variable Description

pa Pressure in the aorta

paf Pressure in the finger arteries

pau Pressure in the upper body arteries

pal Pressure in the lower body arteries

pvl Pressure in the lower body veins

pvu Pressure in the upper body veins

pv Pressure in the vena cava

pvc Pressure in the cerebral veins

pac Pressure in the cerebral arteries

Vla Volume in the left atrium

Vlv Volume in the left ventricle
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compartments, respectively. The 11 compartment model

has nine of these equations, one for each of the arterial and

venous pressures. For example, the change in arterial finger

pressure paf, becomes

dpaf

dt
¼ 1

Caf

pa � paf

Raf

� paf � pv

Rafp

� �
; ð2Þ

where paf, pa, and pv represent model states and Caf, Raf,

and Rafp are the model parameters.

To close the system of equations, two additional equa-

tions are required. These can be obtained by ensuring that

volume is conserved in the left atrium (la) and ventricle

(lv), i.e., we assume that

dVj

dt
¼ qin � qout; j ¼ la, lv: ð3Þ

In these equations the flows are determined using Ohm’s

law for hemodynamics. The latter equations are described

in terms of volume, but pressures are needed to determine

the flow. Pressures in the vessel compartments are found

from solutions to (1); however, additional equations are

required to determine pressures in the left atrium and

ventricle. For the 11 compartment model, these pressures

are explicitly stated to account for the pumping action of

the heart.

Several such models exist in the literature. We use the

model from previous work, proposed by Ottesen and

Danielsen (2003). This model computes a time-varying

pressure in the left atrium and ventricle as

pj ¼ ajðVj � bjÞ2 þ ðcjVj � djÞ fjðt;HÞ; j ¼ la, lv: ð4Þ

Again, this equation is valid for both the left atrium

(j = la) and the left ventricle (j = lv). In this equation Vj is

the volume of the left atrium or the left ventricle, respec-

tively. These volumes are state variables calculated using

(3). Parameters for this equation include aj,bj,cj, and dj,

while fj is an activation function varying between 0 and 1.

The parameter aj (mmHg/cm3) represents the atrial/ven-

tricular elastance during relaxation and bj (cm3) represents

the atrial/ventricular volume at zero diastolic pressure. The

parameters cj (mmHg/cm3) and dj (mmHg) relate to the

volume dependent (contractility) and volume independent

components of the developed pressure. The activation

function fj(t,H), a function of time t (s) and heart rate H

(beats/s) is described by a polynomial of the form

Here ~t ¼ modðt; TÞ (s), T being the period of a single heart

beat, ~pjðHÞ is the peak pressure, and bj(H) is a sigmoidal

function of the heart rate H (beats/s). This function resets

with every heart beat and it is smooth. The pumping model

discussed above does not give rise to additional state

variables, yet it does have a significant number of param-

eters. The left atrium and ventricle functions each contain

14 parameters: four parameters are included in (4) and the

activation function fj contains 10 parameters.

Equation (3) does not account for the change in flow due

to the presence of the valves controlling flow into (the mitral

valve) and out of (the aortic valve) the left ventricle. These

valves are important to ensure that blood flows in the correct

direction. At the start of the cardiac cycle, the aortic valve is

closed while the mitral valve is open, allowing blood to enter

the ventricle at a low pressure. When the ventricular pres-

sure exceeds that of the atrium, the mitral valve is closed.

After closure of the mitral valve, ventricular contraction

increases ventricular pressure until it exceeds aortic pres-

sure, causing the aortic valve to open and blood to be ejected

into the aorta. The aortic valve closes when the cycle is

completed. Note that for healthy subjects, the population

from which our data comes, at no time are both valves open.

This action of the valves introduces discrete behavior into

the model, since the flow out of the left ventricle is either 0

(when the valve is closed) or, e.g., qav = (plv - pa)/Rav. One

way to account for this ‘‘switch’’ is by introduction of dis-

crete events triggered by changes in pressure. However, this

approach would make it difficult to use differential sensi-

tivity analysis to determine sensitivity of model parameters.

Another approach, also used in previous work, e.g., Olufsen

et al. (2004, 2005), is to model the succession of opening

and closing of the valves using varying resistances. This can

be done using a small baseline resistance to define the

‘‘open’’ valve and a resistance that is several orders of

magnitude larger to define the ‘‘closed’’ valve. For example,

the aortic valve resistance can be defined by

Rav ¼ min Rav;open þ exp ð�2ðplv � paÞÞ; 20
� �

: ð6Þ

In this equation, the transition from open to closed is

gradual. An exponential function is used to describe the

amount of ‘‘openness’’ as a function of the pressure gra-

dient. Values in the exponent are chosen to ensure that the

valve closes efficiently and that the effective flow is zero

while the valve is closed.

fj ¼
~pjðHÞ

~tnðbjðHÞ � ~tÞmj

n
nj

j m
mj

j ½ðbjðHÞÞ=ðmj þ njÞ�mjþnj
0� ~t� bjðHÞ; j ¼ la, lv

0 bjðHÞ\~t\T :

8<
: ð5Þ
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In summary, the cardiovascular system is described by

system of 11 coupled nonlinear first order differential

equations predicting changes in pressure and volume as

functions of 52 model parameters. This system comprises

nine equations of the form given in (1) predicting arterial

and venous pressures and two equations of the form given

in (3) predicting atrial and ventricular volumes. Coupled

with these differential equations are five algebraic equa-

tions, two equations predicting pressure in each of the

ventricles (4) and three equations describing the resistance

of the mitral and aortic valves, and also a venous valve (6).

The latter is included to prevent reverse flow in legs. For

completeness, these equations are given in their entirety in

the Appendix. The 52 model parameters include 14 resis-

tors, 9 capacitors, 28 heart parameters, and a scaling factor

relating cerebral blood flow (predicted by the model) to

cerebral blood flow velocity (measured experimentally).

This system of equations can be written as

dX

dt
¼ FðX; t; lÞ; ð7Þ

where X(X,t,l) = [pa … pvc,Vlv,Vla] denotes the 11 state

variables and l = [l1 … l52] denotes the 52 parameters to

be identified. In the following analysis, we use this notation

to discuss the dynamics of the model.

Model Parameters

Nominal parameter values for all resistors and capacitors

for a healthy young subject were determined using theo-

retical considerations for blood pressure, flow, and volume

distribution between organs. Compliances can be estimated

using the volume pressure relation, which requires esti-

mation of both total and unstressed blood volumes. Total

blood volumes cannot easily be measured but experimental

studies suggest to estimate volumes using Nadler’s formula

Nadler et al. (1962) which for the healthy subject analyzed

in this study gives VT = 4673 ml. Unstressed volumes are

difficult to estimate. To our knowledge, only one study

Beneken and DeWit (1967) has attempted to estimate

Vunstr. In addition to volume, it is necessary to use estimates

of blood pressure to estimate compliance for each com-

partment. Standard values for blood pressure are more

easily obtained from the literature; however, for consis-

tency we used Beneken and DeWit (1967) values for both

blood pressure and blood volumes. To adjust pressures for

the subject in question, we assumed that the nominal

estimate for the finger pressure matched the mean arterial

pressure obtained from Portapress measurements. Using

these values, initial compliances for each compartment

were calculated as ðVT ;iÞ � ð% stressedÞ=�pi; with volume

VT,i being the total volume for compartment i. Note that

since the model only contains the systemic circulation, the

sum of volumes for each of the nine arterial and venous

compartments equals the total volume of the cardiovascular

system VT minus the volume of the pulmonary system.

Resistances are calculated using estimates of cardiac output

and information on the distribution of blood flow to the

different regions in the body. Cardiac output was estimated

from the total blood volume using the assumption that the

entire blood volume circulates within one minute, Boron

and Boulpaep (2003). Several studies provide information

on blood flow to the different regions of the body, e.g.,

Beneken and DeWit (1967), Bischoff and Brown (1966),

and Middleman (1972). For consistency with estimates on

unstressed volumes we used values from Beneken and

DeWit (1967), scaled using the subject’s blood volume to

estimate average blood flow rates �qi to each compartment.

Initial resistances were then calculated ð�pin;i � �pout;iÞ=�qi for

each branch. All values used in calculations for C and R are

given in Tables 2 and 3.

Parameter values for the left ventricle were taken from

work by Ottesen and Danielsen (2003). These parameters

were mostly estimated based on data from a dog heart

ventricle. To estimate parameters for the left atrium we

scaled the ventricle parameters to account for the differ-

ence in magnitude between atrial and ventricular systolic

pressure. All of these parameter values are given in

Table 4. Finally, the scaling parameter Aacp (cm2), a

lumped cerebral vasculature cross-sectional area, was

estimated by calculating the approximate cross-sectional

area of the middle cerebral artery in which velocity is

measured, i.e., qacp = vacpAacp.

Using these nominal parameter values including 14

resistors, 9 capacitors, and 28 parameters used in the

pumping functions for the left atrium and ventricle (see

Table 4) we solved the model equations and compared

computed solutions with measurements of finger blood

pressure and cerebral blood flow velocity for a healthy

young subject, see Fig. 2. It should be noted that while our

nominal parameter values provided fairly good estimates

for blood pressure the estimates for cerebral blood flow

velocity are too low (though they are within a physiological

range). This is partly due to our assumption that brain

compartments are assumed to represent the total flow to the

brain, while data are measured in a single artery (the

middle cerebral artery) and partly due to the estimates for

unstressed volumes, which have a high level of uncertainty.

Experimental Data

This study uses data from one healthy young subject who

had no known systemic disease, no history of head or brain

injury, no history of more than one episode of syncope, and
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took no cardiovascular medications, see Fig. 2. Measure-

ments analyzed in this study include beat-to-beat arterial

pressure obtained from a cuff placed on the finger using a

Portapress-2 device (FMS, Inc.) and beat-to-beat middle

cerebral blood flow velocity measurements from the index

finger obtained using a Transcranial Doppler (TCD) system

(MultiDop X4, Neuroscan, Inc.). Data analyzed in this

manuscript was recorded continuously during a 5 min

interval while the subject sat on a chair with their legs

elevated at 90 degrees to reduce venous pooling. After the

subject was asked to stand, recordings were continued for

an additional 5 min period, see Fig. 1b. All analog signals

was recorded at 500 Hz using Labview NIDAQ (National

Instruments Data Acquisition System 64 Channel/100 Ks/

s, Labview 6i, Austin, TX) on a Pentium Xeon 2 GHz dual

processor computer and stored for offline processing. Prior

to analysis, data were down-sampled to 50 Hz. All data

was visually inspected for accuracy of R-wave detection,

artifacts, and occasional extra systoles that were removed

using a linear interpolation algorithm. Data was collected

in the Syncope and Falls in the Elderly (SAFE) Laboratory

at the General Clinical Research Center (GCRC) at the

Beth Israel Deaconess Medical Center (BIDMC). The

experimental study includes additional measurements, but

for the analysis in this manuscript we received data strip-

ped of all identifiers. A similar protocol was used in

previous studies, see e.g., Novak et al. (2007).

Parameter Identification

Physiological quantities vary significantly between indi-

viduals, and as discussed above, nominal parameter values

do not accurately describe dynamics observed within one

Table 2 Compliance estimates

giving the ratio of the effective

volume to the pressure.

Pressures were estimated from

patient data. All other data was

estimated from Beneken and

DeWit (1967) and scaled based

on patient anthropomorphic

data. See Fig. 1 for location of

the components

Compartment Pressure

(mmHg)

Total

volume (ml)

Percent

stressed

Effective

volume (ml)

Compliance

(ml/mmHg)

Aorta (a) 73 92.7 35 32.4 0.444

Upper body arteries (au) 70 384.8 30 115.4 1.649

Lower body arteries (al) 68 84.8 16 13.6 0.200

Cerebral arteries (ac) 70 99.0 25 24.7 0.354

Finger arteries (af) 72.8 33.6 25 8.4 0.115

Vena cava (v) 4 599.1 8 47.9 11.982

Upper body veins (vu) 6 1961.5 8 156.9 26.154

Lower body veins (vl) 8 333.5 8 26.7 3.335

Cerebral veins (vc) 10 402.0 20 80.4 8.040

Ventricle systolic (lv) 73.5 – – – –

Ventricle diastolic (lv) 2 – – – –

Atrium pressure (la) 3 – – – –

Table 3 Initial resistances and

flowrates for each pathway.

Flow percentages are from

Beneken and DeWit (1967), and

scaled based on estimated

patient blood volume.

Resistances are calculated using

Poiseuille’s law,

Ri ¼ ð�pin � �pout=�qiÞ: See Fig. 1

for location of components

Pathway Segment Percent of

cardiac output

Flowrate

(ml/s)

Resistance,

PRU (mmHg s/ml)

qav Cardiac output 100 77.883 0.006

qau Upper body 64 62.307 0.048

qaup Upper body 64 49.845 1.284

qal Lower body 8 6.231 0.321

qalp Lower body 8 6.231 9.630

qac Cerebral (Brain) 20 15.577 0.193

qacp Cerebral (Brain) 20 15.577 3.852

qaf Finger (Arm) 8 6.231 0.032

qafp Finger (Arm) 8 6.231 11.042

qvl Lower body 8 6.231 0.321

qvu Upper body 64 62.307 0.032

qvc Cerebral (Brain) 20 15.577 0.385

qv Cardiac output 100 77.883 0.013
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Table 4 Initial and optimized parameter values for the 11 compart-

ment model. Columns two and six are nominal parameter values.

Columns three and seven give the optimized parameter values when

all 52 parameters were optimized. Columns four and eight give the

optimized parameter values when the top 22 sensitive parameters

were optimized and the insensitive parameters remained fixed at their

nominal values

Parameter Initial Optimized, 52 Optimized, 22 Parameter Initial Optimized, 52 Optimized, 22

Rav 0.006 0.004 – mlv 9.900 9.425 9.010

Rau 0.048 0.104 – hlv 0.951 0.871 1.323

Raup 1.284 1.354 1.104 tdiff,lv 0.094 0.107 –

Ral 0.321 0.449 – tmin,lv 0.186 0.177 0.101

Ralp 9.629 9.967 9.601 pmin,lv 0.842 0.563 0.659

Rvl 0.321 0.346 – pdiff,lv 0.316 0.423 –

Rvu 0.032 0.014 – glv 17.500 18.326 20.528

Rmv 0.014 0.015 – /lv 1.000 1.065 1.511

Rvc 0.385 0.623 – aa 0.0030e - 2 0.001e - 2 –

Racp 3.852 3.832 3.688 ca 6.400 6.630 4.765

Rac 0.193 0.115 – ba 5.000 4.183 –

Rv 0.013 0.006 – da 1.000 1.340 –

Ca 0.445 0.465 – na 2.000 2.369 2.669

Cau 1.649 1.870 1.958 ma 2.200 1.977 –

Cal 0.200 0.300 – ma 9.900 10.157 –

Cac 0.354 0.180 0.079 ha 0.951 0.886 0.910

Cvl 3.335 3.357 1.463 tdiff,la 0.094 0.168 –

Cvu 26.153 27.370 48.540 tmin,la 0.186 0.138 –

Cv 11.982 13.099 – pmin,la 0.842 1.055 0.600

Cvc 8.040 8.585 – pdiff,la 0.316 0.427 –

alv 0.0003 0.0004 – ga 17.500 17.627 –

clv 6.400 6.657 4.896 /a 1.000 1.303 0.666

blv 5.000 4.075 – Aacp 0.300 0.289 –

dlv 1.000 0.997 – Caf 0.115 0.094 –

nlv 2.000 2.716 3.421 Raf 0.032 0.074 –

mlv 2.200 1.954 1.378 Rafp 11.042 11.572 7.105
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Fig. 2 Data for finger blood pressure paf(t) (mmHg) (top panel) and

cerebral blood flow velocity vacp(t) (cm/s) (bottom panel). Data (gray

line) are shown in (a) for 0 \ t \ 60 s, which represent the time

interval in which the subject is sitting down with his/her legs elevated

at 90 degrees, and 15 \ t \ 20 s in (b) to show a zoomed in picture of

the waveform. Data was measured at 50 Hz. The black line in (a),

shows simulations with nominal parameter values
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subject. To identify model parameters that characterize a

given time-series dataset we used a weighted least-squares

formulation minimizing the errors between the blood

pressure and blood flow velocity data and the model out-

puts. This weighted least-squares cost functional is given

by

Ĵ ¼ 1

N�pd
af

XN

i¼1

pd
af ðtiÞ � pc

af ðtiÞ
��� ���2

þ 1

N�vd
acp

XN

i¼1

vd
acpðtiÞ � vc

acpðtiÞ
��� ���2

þ 1

M�pd
af ;sys

XM

i¼1

pd
af ;sysðtiÞ � pc

af ;sysðtiÞ
��� ���2

þ 1

M�pd
af ;dia

XM

i¼1

pd
af ;diaðtiÞ � pc

af ;diaðtiÞ
��� ���2

þ 1

M�vd
acp;sys

XM

i¼1

vd
acp;sysðtiÞ � vc

acp;sysðtiÞ
��� ���2

þ 1

M�vd
acp;dia

XM
i¼1

vd
acp;diaðtiÞ � vc

acp;diaðtiÞ
��� ���2;

where paf is blood pressure in the finger and vacp = qacp/

Aacp is cerebral blood flow velocity, and Aacp represents the

cross-sectional area of the middle cerebral artery. The

subscripts c and d denote computed versus experimental

values, and N is the number of data points in the time-

series. Each term in the functional is weighted by the

average of the data used in that term, denoted by �p and �v:

To get correct representation of the pulse amplitude, spe-

cial emphasis was placed on capturing both peaks and

valleys of the waveform. This is done by including terms

minimizing the difference between systolic and diastolic

values. The time series to be analyzed contains M periods,

thus there will be M systolic and diastolic values.

Since data are only available for two locations, the above

least squares cost functional is not able to ensure correct

physiological ranges for internal states. In particular, we

observed that the model overestimated the baseline aortic

valve resistance defined in (6), which gave rise to an un-

physiologically large discrepancy between the left ventricular

plv,sys systolic pressure and the systolic aortic pressure pa,sys,

Boron and Boulpaep (2003). To avoid the large pressure dis-

crepancy, we added a constraint minimizing the error between

the systolic ventricular pressure and the systolic aortic pres-

sure. Thus an effective cost functional can be written as

J ¼ Ĵ þ 1

M�pd
a;sys

XM
i¼1

pc
a;sysðtiÞ � pc

lv;sysðtiÞ
��� ���2: ð8Þ

To identify parameters that minimize the effective cost

functional J we used the Nelder–Mead algorithm Kelley

(1999), which is based on cost functional evaluations on

sequences of simplexes. Optimizations were run using

Matlab 6.5 on a 14-node cluster at Roskilde University,

Denmark, each node with an Intel Pentium 4 2.26 GHz

processor with 1GB RAM. Identification of all 52 param-

eters took 37 h. Simulation results with the model using the

optimized parameters are shown in Fig. 3a and optimized

parameters are listed in Table 4.

Sensitivity Analysis

Results discussed above shows that it is possible to identify

52 parameters. However, due to the large number of

parameters the solution to this optimization problem is not

unique, i.e., a small variation of the nominal parameter

values can lead to large changes in estimates for optimized

parameter values, in particular for parameters that are

insensitive. Thus, to better understand the dependence of

the data on the model parameters, we have analyzed the

sensitivity of the model state variables that represent the

data to each of the parameters. We anticipate that this will

result in a subset of identifiable parameters that when

optimized is able to predict pressure and velocity dynamics

observed in the data.

To derive sensitivity equations for our system of equa-

tions described in (7), we use the basic differential equation

analysis approach described by Eslami (1994) and Frank

(1978). Following this approach we define the relative

sensitivity Sij of the state Xi to parameter lj non-dimen-

sionalized by the state Xi and the parameter value lj as

Sijðt; lÞ
��
l¼l0
¼ oXiðt; lÞ

olj

lj

Xiðt; lÞ

�����
l¼l0

; lj;Xiðt; lÞ 6¼ 0:

ð9Þ

Here l0 = [l1,0 … l52,0] denote the nominal values for

the parameters, and we assume all state variables are

continuous. As shown in Fig. 4, Sij(t,l) is a function of

time.

Our goal is to separate model parameters into two

groups, sensitive and insensitive. Therefore, we computed

a maximum relative sensitivity Sj composite over all states

and times for each parameter of the form

Sj ¼ max
i

max
k

Sijðt; lÞ
� �����

l¼l0

¼ max
i

max
k

dXiðtk; lÞ
dlj

lj

Xiðtk; lÞ

 !�����
l¼l0

: ð10Þ

Because data is only available for the two quantities, finger

pressure paf and cerebral blood flow velocity vacp = qacp/

Aacp, where qacp = (pac - pvc)/Racp, the maximum is

computed over these three states i = paf, pac, and pvc.
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To compute the partial derivatives qXi/qlj, also referred

to as quasi-state variables, each differential equation of the

form (7) is differentiated with respect to each parameter,

assuming that the partial derivatives commute

o

olj

dXi

dt
¼ d

dt

oXi

olj

¼ o

olj

FiðX; lÞ: ð11Þ

The sensitivities in (11) are to be solved simultaneously

with the state equations in (7). Together these two systems

of equations result in 11 + 11 9 52 = 583 equations for

the states {pi,Vi} augmented with the quasi-state solutions

qXi/qlj. Thus the full solution is the 11 states and 572

quasi-states.

To get a better understanding for the form of the sen-

sitivity equations, we have derived the equation predicting

the sensitivity Spaf ;Ral
; which can be computed by differ-

entiating (2) with respect to Ral,

d

dt

opaf

oRal

� �
¼ 1

Caf

1

Raf

opa

oRal

� opaf

oRal

� �
� 1

Rafp

opaf

oRal

� opv

oRal

� �� �
;

solving for qpaf/qRal, and multiplying by Ral/paf(t). The

resulting solution is shown in Fig. 4, and together with

Table 5 we see that max sensitivity of paf with respect to

Ral is 0.0008. In other words, this parameter is very

insensitive (compare graphs on Fig. 4). The remaining 571

equations can be derived using similar considerations.

However, deriving sensitivity equations using the

analytical approach exemplified above is tedious and

error prone. Alternatively, sensitivities can be derived

using a computational approach, either using finite

differences, which may cause difficulties in multi-scale

problems, or using automatic differentiation (AD), which

uses the chain rule to evaluate derivatives to machine

precision. The latter approach was used to derive

sensitivities for the cardiovascular model. To apply

automatic differentiation, we exploit the chain rule to

rewrite (11) as

o

olj

dXi

dt
¼ o

olj

FiðX1; . . .;X11; l1; . . .; l52Þ

¼
X11

k¼1

oFi

oXk

oXk

olj

 !
þ oFi

olj

; ð12Þ

where the Jacobians qF/qX and qF/ql are calculated using

AD, and qX/ql are the quasi-state variables. Thus, the right

hand side of the system of ODE’s in (11) is constructed

with the components of the Jacobians and the quasi-state

variables. Solutions to quasi-state equations give time-

series for dXi/dlj(tk), where k = 1 … N, i represents the

state variables, and j represents each of the 52 parameters.

The above derivation of sensitivity equations required

that the derivatives of the states with respect to each of the

parameters are differentiable. The system of equations

analyzed in this study includes two groups of equations that
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Fig. 3 Each panel shows finger pressure paf (top) and cerebral blood

flow velocity vacp (bottom) data and model solutions. (a) Model with

52 parameters optimized, cost of 1.77. (b) Model with the 22 most

sensitive parameters optimized, cost of 1.93
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Fig. 4 Plots of the relative sensitivity Spaf ;j; where j is parameters cv,

Racp. Cal, and Ral
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do not immediately appear to be fully differentiable: the

three valves in (e.g., (6)) and the heart functions (e.g., (4),

(5)). The valve equations, while piecewise continuous, do

not have derivatives at the cusps between the exponential

function and the constant. To construct a smooth function

that is differentiable, we adapted a smooth approximation,

Chen et al. (2004), of the form

min
�
ðx1; x2Þ ¼ �� ln

X2

i¼1

e�xi=�

 !
;

using an � of 0.1. In the heart function, the partial

derivative of the ventricle activation function fi defined

in (5) with respect to the parameter n is given by

of

on
¼ ~pn�nm�m bðnÞ

nþ m

� �ð�n�mÞ
~tnðbðnÞ

� ~tÞm lnð~tÞ � lnðmÞ � ln
bðnÞ

nþ m

� �� �
tpv
�m

n2

h i
;

which is undefined at ~t ¼ 0: However, using L’Hospital’s

Rule, it is possible to determine the limit of this portion of

the equation as ~t! 0: To calculate this limit we let

Kn ¼ ~pn�nm�m bðnÞ
nþ m

� �ð�n�mÞ
tpv
�m

n2

h i
;

yielding

lim
~t!0

Kn~tnðb� ~tÞm lnð~tÞ ¼ lim
~t!0

Kn
1=~t

�n~t�n�1mðb� ~tÞ�m�1
¼ 0:

Since f = 0 at b\~t\T ; ofi=on ¼ 0: Thus we have

continuity of qf/qn if we assign qf/qn = 0 at t = 0,

because ~t ¼ T of period i while ~t ¼ 0 of period i + 1. A

similar analysis is done for the remaining partial deriva-

tives with respect to other parameters in the heart

activation function.

Results

Parameter Sensitivity

To rank parameters from the most to the least sensitive,

we solved equations (1) predicting pressures in each of

Table 5 Ranked (most-to-least) sensitivities for 11 compartment model for the pressures pf, pac and pvc with respect to all parameters

Rank Parameter paf pac pvc Sensitivity Rank Parameter paf pac pvc Sensitivity

1 clv 2.029 0.798 0.054 2.029 27 mla 0.139 0.122 0.013 0.139

2 nlv 1.981 1.377 0.043 1.981 28 Ca 0.135 0.076 0.007 0.135

3 hlv 1.270 0.432 0.070 1.270 29 tdiff,lv 0.133 0.039 0.007 0.133

4 Raup 1.084 1.052 0.189 1.084 30 Cv 0.122 0.115 0.074 0.122

5 Ralp 0.401 0.390 0.944 0.944 31 mla 0.092 0.058 0.052 0.092

6 /lv 0.876 0.357 0.022 0.876 32 gla 0.086 0.080 0.008 0.086

7 Cvu 0.874 0.862 0.823 0.874 33 Rvc 0.074 0.065 0.058 0.074

8 Racp 0.679 0.797 0.166 0.797 34 Rau 0.067 0.048 0.003 0.067

9 nla 0.788 0.743 0.122 0.788 35 blv 0.056 0.054 0.005 0.056

10 pmin,lv 0.725 0.279 0.019 0.725 36 Caf 0.051 0.010 0.001 0.051

11 cla 0.668 0.625 0.066 0.668 37 tdiff,la 0.050 0.045 0.005 0.050

12 hla 0.553 0.518 0.049 0.553 38 pdiff,lv 0.049 0.021 0.001 0.049

13 tmin,lv 0.476 0.157 0.026 0.476 39 Rvu 0.042 0.030 0.036 0.042

14 Cvl 0.031 0.030 0.416 0.416 40 bla 0.010 0.008 0.022 0.022

15 Rafp 0.382 0.354 0.005 0.382 41 Raf 0.022 0.001 0.000 0.022

16 mlv 0.378 0.110 0.018 0.378 42 Rmv 0.021 0.020 0.001 0.021

17 /la 0.354 0.296 0.027 0.354 43 pdiff,la 0.020 0.015 0.001 0.020

18 Cau 0.323 0.284 0.048 0.323 44 Rv 0.019 0.017 0.015 0.019

19 mlv 0.288 0.184 0.033 0.288 45 Cal 0.010 0.009 0.003 0.010

20 glv 0.246 0.092 0.007 0.246 46 Rav 0.008 0.003 0.000 0.008

21 pmin,la 0.236 0.220 0.023 0.236 47 Ral 0.008 0.007 0.007 0.008

22 Cac 0.035 0.205 0.005 0.205 48 alv 0.003 0.003 0.000 0.003

23 tmin,la 0.199 0.185 0.020 0.199 49 dlv 0.002 0.001 0.000 0.002

24 Rvl 0.010 0.009 0.173 0.173 50 ala 0.001 0.001 0.002 0.002

25 Rac 0.032 0.163 0.003 0.163 51 dla 0.001 0.000 0.000 0.001

26 Cvc 0.143 0.142 0.110 0.143 52 Aacp 0 0 0 0

Values in boldface are the maximum values for each parameter
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the arterial and venous compartments and (3) predicting

volumes of the atrium and the ventricle, coupled with the

system of sensitivity equations as written in (12). Then,

we calculated the max sensitivity for each parameter as

described in (10). Results of these calculations gave rise

to the ranking shown in Fig. 5a and Table 5. Results

depicted on this graph suggests a decreasing exponential

relationship between sensitivity Sj and the relative ranking.

Figure 5b–d show the results of optimizations run with a

systematic reduction in the number of parameters opti-

mized. The weighted least squares cost, the number of

optimization iterations, and computational time were

recorded. Figure 5b indicates a negligible change in cost

from 1.77 as the number of ‘‘estimated’’ parameters are

reduced from 52. Identification of the 22 most sensitive

parameters gives a cost increase of roughly 8% to 1.93, yet

optimizing 21 parameters increases the cost by more than

100% to 3.63. Hence, we name the top 22 parameters

‘‘sensitive’’, and maintain that acceptable model fit can be

attained by only optimizing these 22, with a resultant

reduction in the number of iterations needed to half of the

starting number. Figure 3 compares results for finger blood

pressure and cerebral blood flow velocity obtained when all

52 model parameters are identified (left panel), with a cost

of 1.77, and when only the top 22 parameters are identified

(right panel), with a cost of 1.93. Table 4 shows optimized

parameters. Analysis of these two graphs reveal only slight

qualitative differences between the results.

Finally, it should be noted that Aacp does not appear in

the state equations. Therefore its sensitivity is not calcu-

lated as in the above equations and as a result it is ranked at

the bottom of the sensitivity list with a sensitivity equal to

zero. Optimizations run for a fixed nominal value of Aacp

show a negligible change in cost compared to optimiza-

tions that identified Aacp. These results confirm our

hypothesis that the parameter Aacp is not sensitive.

Model Reduction

Sensitivity ranking of parameters shown in Table 5 can

also be used to reduce the complexity of the model. In

general, to reduce the model, compartments comprised of

sensitive parameters are retained while those mainly con-

sisting of insensitive parameters may be eliminated.

However, before a compartment is eliminated several

factors must be taken into account. The system must have a

heart acting as a pump to raise the pressure against its

gradient, so one or both heart compartments are retained.

Second, separation between the brain and the rest of the

body must be maintained because data used for model

validation are collected both in the brain (cerebral blood

flow velocity) and in the body (finger blood pressure).

Finally, the various model components are related, thus if

one compartment is removed, it may impact dynamics of

other elements, which may impact the solution. Furthermore,
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Fig. 5 (a) Sensitivities of each

parameter versus their relative

ranking. (a–d) Results of

parameterizing the system by
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of insensitive parameters fixed

at their nominal values. (b, c, d)

depict the least squares cost, the

number of iterations, and the

computational time versus the

number of sensitive parameters

identified, respectively. The

vertical lines are each at 21, the

number of sensitive parameters

104 Cardiovasc Eng (2008) 8:94–108

123



if the data used for model comparison are not adequate, it

will not be possible to accurately predict the distribution of

blood between compartments. However, instead of

removing a compartment to remove a parameter, it may be

possible to keep one parameter constant, while other

parameters are identified by minimizing the weighted least

squares error between the data and the model.

We first observe that each atrial parameter is signifi-

cantly less sensitive than its corresponding ventricle

parameter. This makes sense physiologically since the

atrium acts primarily as a reservoir and to a lesser extent as

a small priming pump, leaving the primary driver of the

pressure gradient to the ventricle. Therefore the atrium is

removed from the model. We next consider the portion of

the system below the level of the heart. Peripheral resis-

tances Ralp, Raup, and Rafp are all sensitive, as well as

compliances Cvl, Cvu, and Cau. Instead of concluding

immediately that this entire portion of the circulation is

sensitive and therefore necessary to the model, we consider

these results in light of the physiology and the data. Since

we only have data for the brain and the arteries near the

heart, model results obtained for the remainder of the body

are dependent upon each other. In other words, many

combinations of pressures, resistances, and compliances

could comprise the same total resistance and flow in the

body below the heart, leading to the same solution for

arterial blood pressure and cerebral blood flow velocity.

The differentiation between the upper and lower bodies that

was necessary for modeling a data set with standing, i.e.,

gravitational effects, is not necessary with our steady-state

sitting data. Therefore we conclude that sensitive parame-

ters are such because they are dependent upon each other to

provide an effect equal to what would occur with a com-

bined upper and lower body. In addition, note that finger

parameters Caf and Raf are ranked insensitive, at 36 and 41,

respectively. This is likely because the proportion of blood

flowing to the arm is small compared to the rest of the body

and therefore not significant to the model parameterization.

In summary, we eliminated compartments representing

the finger and the left atrium and combined the upper and

lower body compartments. The resulting compartment

model has seven compartments representing the left

ventricle, aorta and vena cava, arteries and veins in the

body as well as in the brain, see Fig. 6. Elimination of the

atrium reduces the number of parameters by 15 (including

Rv); at the same time, elimination of the arterial and

venous compartments reduces the number of parameters

by eight, hence, the proposed reduced model has seven

differential equations and 29 parameters, compared with

11 differential equations and 52 parameters for the full

model. Compared against the full model of with 52

parameters, which had a cost of 1.77, the reduced model

cost is 1.58. Qualitatively the model solution fits the data

similarly in both cases. Equations for this model can be

found in the Appendix.

As we did with the full model, we carried out sensitivity

analysis to rank the parameters with respect to pressures

that represent the data to be studied. For this model these

pressures are: pa, pac, and pvc. Similar to the full model, the

heart parameters are shown to be the most sensitive (n, c, h,

/, tmin, and pmin) though they appear in a slightly different

order. The most sensitive non-heart parameter for this

model is Rasp. This compares well with the full model

where Raup and Ralp showed high sensitivity. Also both the

full model and the reduced model shows high sensitivity to

Racp (ranked 9 and 5 in each, respectively) because it is

explicitly part of one of the equations that directly repre-

sents the data. Finally, it was found from analyses similar

to those done with full model that 20 sensitive parameters

can be accurately estimated in the small model.
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Discussion

In this study we have shown that it is possible to accu-

rately predict 22 of 52 parameters for a single dataset in

our compartment model of systemic blood pressure and

blood flow, while retaining model fit to data as seen in

Fig. 3. Sensitive parameters have physiological signifi-

cance, most of which characterize the left ventricle

waveform or represent lumped peripheral resistances.

Hence, to identify parameter values for multiple datasets

only the most sensitive parameters need to be identified

for each of the datasets, and it would be reasonable to use

literature estimates for the least sensitive parameters and

keep these fixed at nominal values. Based on these pre-

dictions, it would then be possible to calculate means and

standard deviations for each parameter for a given group

of subjects and compare values between different groups

of subjects. We have also shown that it is possible to use

sensitivity information to reduce the proposed model and

design a simpler model that has a similar number of

sensitive parameters. We do not however make any

conclusions on sensitivities during postural change from

sitting to standing. We hypothesize in that case that dif-

ferentiation between upper and lower body due to

gravitational effects would be necessary. Further

investigations include performing the sensitivity analysis

on the previously developed postural change model, O-

lufsen et al. (2005).

Looking specifically at the top 22 parameters of the

original model, it is seen in Table 6 that the majority of the

top sensitive parameters characterize the heart functions,

particularly the ventricle. These parameters are largely

responsible for describing the timing and magnitude of

peak ventricular heart pressure ppv and tpv, respectively.

Because the heart function drives the model, and the peak

pressure and waveform timing in the heart are similar to

that in the aorta and nearby arteries, Boron and Boulpaep

(2003), it is consistent that the model fit would be most

sensitive to these parameters. Not much is known about

these parameters a priori, as opposed to those that are

estimated from known physiological quantities, so finding

parameter values for an individual patient is key for model

parameterization. The peripheral resistances Raup, Ralp,

Racp, and Rafp characterize the largest pressure drops, so it

makes sense that they have a large impact on the solution.

Conversely, we correlate insensitivity of parameters

with known physiology. Each atrial parameter is less sen-

sitive than its corresponding ventricular parameters. This is

consistent with the fact that maximum atrial pressure is

approximately an order of magnitude less than maximum

Table 6 Top 22 sensitive parameters and their effect on the model

Parameter Role in model Effect on model with increase in parameter value

clv Ventricular contractility Increase developed and systolic pressure

nlv Exponent in ventricle polynomial Ventricular peak pressure moves right in time

hlv Median of ventricular tp sigmoid Increase median time for peak pressure at given heart rate

Raup Resistance, upper body arterioles Increase upper body pressure drop

Ralp Resistance, lower body arterioles Increase lower body pressure drop

/lv Median of ventricular pp sigmoid Increase median peak pressure at given heart rate

Cvu Compliance, upper body veins Increase paf and vacp

Racp Resistance, cerebral arterioles Increase cerebral pressure drop

nla Exponent in atrium polynomial Atrial peak pressure moves right in time

pmin,lv Minimum of ventricular pp sigmoid Increase minimum possible peak pressure at given heart rate

cla Atrial contractility Increase developed and systolic pressure

hla Median of atrial tp sigmoid Increase median time for peak pressure at given heart rate

tmin,lv Minimum of tp sigmoid Increase minimum possible peak pressure at given heart rate

Cvl Compliance, lower body veins Increase paf and vacp

Rafp Resistance, finger arterioles Increase finger pressure drop

mlv Steepness of ventricular tp sigmoid Increase distance from median time at given heart rate

/la Median of atrial pp sigmoid Increase median peak pressure at given heart rate

Cau Compliance, upper body arteries Increase paf and vacp, narrow waveforms

mlv Exponent in ventricle polynomial Ventricular peak pressure moves left in time

glv Steepness of ventricular pp sigmoid Increase distance from median time at given heart rate

pmin,la Minimum of atrial pp sigmoid Increase minimum possible peak pressure at given heart rate

Cac Compliance, cerebral arteries Narrow vacp waveform
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ventricular pressure, Boron and Boulpaep (2003), and the

atrium primarily acts as a primer pump. As another

example, the position of dlv representing the volume-

independent component of developed pressure for the

ventricle, is at the bottom of the sensitivity ranking.

Physiologically this could mean several things such as: dlv

could be virtually identical between young adult subjects; it

could be scaled based on the subject but its exact value is

not critical for model fit; or that its place in the model is not

necessary. In immediate future investigations we would

choose to fix parameters such as these at their estimated

from literature values as stated previously and assume that

such values are accurate enough for model fit.

To reach the results in this study we used automatic

differentiation to calculate the gradients used to find the

sensitivities of each parameter with respect to each of the

state variables. While automatic differentiation algorithms

are well-developed and have long been used in languages

such as Fortran, Matlab algorithms are fairly new, Coleman

and Verma (1998) and Forth and Ketzscher (2004). The

main disadvantage of the Matlab algorithms is that they are

slow relative to Fortran and C++. One numerical solve of

the model including sensitivity equations takes about

30 min, and an optimization run with the Nelder–Mead

simplex method not including the sensitivity equations

takes a day and a half. As we wish to analyze multiple

subjects’ data and expand to different populations, speed

will become a necessity. Combining the 30-min-per-itera-

tion automatic differentiation with a many-iteration

optimization routine in Matlab is not reasonable for this

purpose. Therefore we intend to explore automatic differ-

entiation algorithms in Fortran and C++. In addition, using

automatic differentiation for this problem makes it feasible

to investigate the use of gradient-based optimization

methods Kelley (1999), which may lead to more efficient

parameter identification.

Finally, our sensitivity analysis does not tell us anything

about the correlation between parameters. The body is a

closed system of interacting parts, a model of which would

likely contain parameters that act dependently on each

other. Generalized sensitivities, discussed by Thomaseth

and Cobelli (1999), may elucidate interactions between

parameters and also reveal time intervals for which a

parameter is most sensitive. In future work we plan to

investigate the use of this and other sensitivity analysis

methods such as Green’s method, Hwang et al. (1978).

Acknowledgments The authors wish to thank the American Insti-

tute of Mathematics for supporting this work. Authors would like to

acknowledge Dr. Fink, Department of Mathematics, University of

Oxford, UK, who developed the Matlab code for automatic differ-

entiation. The work by M. S. Olufsen and H. T. Tran was supported in

part by NSF-DMS Grant # 0616597. H. T. Tran was supported by

NIH under Grant 9 R01 AI071915-05. C. Zapata was supported in

part by NSA under Grant H98230-06-1-0098 and NSF under Grant

DMS-0552571 as part of the REU summer program. V. Novak,

director of the SAFE Laboratory at BIMDC was supported by NIH-

NIA Harvard Older American Independence Center 2P60 AG08812-

11A1, Core B.

Appendix

Equations, Full Model

(1) Compartment ODE’s:

dpa

dt
¼ plvðtÞ�paðtÞ

Rav

�paðtÞ�pauðtÞ
Rau

�paðtÞ�pacðtÞ
Rac

�

�paðtÞ�pafðtÞ
Raf

�
=Ca

dpau

dt
¼ paðtÞ�pauðtÞ

Rau

�pauðtÞ�palðtÞ
Ral

�pauðtÞ�pvuðtÞ
Raup

� �
=Cau

dpal

dt
¼ pauðtÞ�palðtÞ

Ral

�palðtÞ�pvlðtÞ
Ralp

� �
=Cal

dpaf

dt
¼ paðtÞ�pafðtÞ

Raf

�pafðtÞ�pvðtÞ
Rafp

� �
=Caf

dpac

dt
¼ paðtÞ�pacðtÞ

Rac

�pacðtÞ�pvcðtÞ
Racp

� �
=Cac

dpv

dt
¼ pvuðtÞ�pvðtÞ

Rvu

þpvcðtÞ�pvðtÞ
Rvc

þpafðtÞ�pvðtÞ
Rafp

�

�pvðtÞ�plaðtÞ
Rv

�
=Cv

dpvu

dt
¼ pvlðtÞ�pvuðtÞ

Rvl

þpauðtÞ�pvuðtÞ
Raup

�pvuðtÞ�pvðtÞ
Rvu

� �
=Cvu

dpvl

dt
¼ palðtÞ�pvlðtÞ

Ralp

�pvlðtÞ�pvuðtÞ
Rvl

� �
=Cvl

dpvc

dt
¼ pacðtÞ�pvcðtÞ

Racp

�pvcðtÞ�pvðtÞ
Rvc

� �
=Cvc

dVlv

dt
¼plaðtÞ�plvðtÞ

RmvðtÞ
�plvðtÞ�paðtÞ

RavðtÞ
dVla

dt
¼pvðtÞ�plaðtÞ

Rv

�plaðtÞ�plvðtÞ
RmvðtÞ

Parameters include Ri (mmHg s/cm3), Ci (cm3/mmHg).

2) Valve equations Rav, Rmv, Rvu:

Rav ¼ minðRav;open þ eð�2ðplv�paÞÞ; 20Þ
Rmv ¼ minðRmv;open þ eð�2ðpla�plvÞÞ; 20Þ
Rvu ¼ minðRvu;open þ eð�2ðpvu�pvÞÞ; 20Þ
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3) Left atrium and ventricle:

pjðtÞ¼ajðVjðtÞ�bjÞ2þðcjVjðtÞ�djÞfjðtÞ; j¼lv,la

fjðtÞ¼
~pjðHÞ

~tnjðbðHÞ�~tÞmj
n

nj

j m
mj

j ½ðbjðHÞÞ=ðmjþnjÞ�mjþnj
0�~t�bjðHÞ

0 bjðHÞ\~t\T

8><
>:

~t¼modðt;TÞ

tj¼ðtdiff ;jÞ
hmj

j

Hmjþhmj

j

þtmin;j

~pj¼ðpdiff ;jÞ
Hgj

Hgjþ/
gj

j

þpmin;j

bjðHÞ¼
njþmj

nj
tjðHÞ

Equations, Reduced Model

(1) Compartment ODE’s:

dpa

dt
¼ plv � pa

Rav

� pa � pas

Ras

� pa � pac

Rac

� �
=Ca

dpv

dt
¼ pvs � pv

Rvs

þ pvc � pv

Rvc

� pv � plv

Rmv

� �
=Cv

dpas

dt
¼ pa � pas

Ras

� pas � pvs

Rasp

� �
=Cas

dpvs

dt
¼ pas � pvs

Rasp

� pvs � pv

Rvs

� �
=Cvs

dpac

dt
¼ pa � pac

Rac

� pac � pvc

Racp

� �
=Cac

dpvc

dt
¼ pac � pvc

Racp

� pvc � pv

Rvc

� �
=Cvc

dVlv

dt
¼ pv � plv

Rmv

� plv � pa

Rav

(2) Valve equations, Rav, and Rmv:

Rmv ¼ minðRmv;open þ eð�2ðpv�plvÞÞ; 20Þ
Rav ¼ minðRav;open þ eð�2ðplv�paÞÞ; 20Þ

(3) Left ventricle: Equations for the left ventricle are

identical to those displayed above.
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